

®

AMX™ CFire Target Guide

First Printing: June 1, 1999
Last Printing: November 1, 2007

Copyright © 1994 - 2007

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114

AMX CFire Target Guide KADAK i

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates during the product's
initial support period. For technical support beyond the initial period, you must purchase
a Technical Support Subscription. Contact KADAK for details. Please keep us informed
of the primary user in your company to whom update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail. KADAK reserves
the right to charge for technical support services which it deems to be beyond the normal
scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Your feedback helps in the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

ii KADAK AMX CFire Target Guide

Copyright © 1994-2007 by KADAK Products Ltd.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, B.C., CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability and fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

AMX CFire Target Guide KADAK rev8 iii

AMX CFire TARGET GUIDE
Table of Contents

Page

1. Getting Started with AMX CFire 1

1.1 Introduction .. 1
1.2 AMX Files .. 2
1.3 AMX Nomenclature ... 4
1.4 AMX CFire Target Specifications ... 5
1.5 Launch Requirements ... 6

2. Program Coding Specifications 9

2.1 Task Trap Handler .. 9
2.2 Task Scheduling Hooks .. 10

3. The Processor Interrupt System 11

3.1 Operation .. 11
3.2 AMX Vector Table .. 13
3.3 AMX Interrupt Priority and NMI ... 15
3.4 Conforming ISPs .. 16
3.5 Nonconforming ISPs .. 18
3.6 Processor Vector Initialization ... 19

4. Target Configuration Module 21

4.1 The Target Configuration Process .. 21
4.2 Target Configuration Parameters ... 25
4.3 Interrupt Service Procedure (ISP) Definitions 29
4.4 Defining a Fast Clock ISP .. 32
4.5 Null Functions .. 34
4.6 ROM Option Parameters .. 35

5. Clock Drivers 37

5.1 Clock Driver Operation .. 37
5.2 Custom Clock Driver ... 39
5.3 AMX Clock Drivers ... 41
5.3.1 MCF5206 GPT Clock Driver .. 41
5.3.2 MCF5307 GPT Clock Driver .. 42
5.3.3 MCF5272 GPT Clock Driver .. 43
5.3.4 MCF5249 GPT Clock Driver .. 44
5.3.5 MCF5407 GPT Clock Driver .. 45
5.3.6 MCF5282 PIT Clock Driver ... 46
5.3.7 MCF5475 GPT Clock Driver .. 47
5.3.8 MCF5271 PIT Clock Driver ... 48

iv rev6 KADAK AMX CFire Target Guide

AMX CFire TARGET GUIDE
Table of Contents (Cont'd)

Appendices
Page

Appendix A. Target Parameter File Specification A-1

A.1 Target Parameter File Structure ... A-1
A.2 Target Parameter File Directives ... A-3
A.3 Porting the Target Parameter File .. A-11

Appendix B. AMX CFire Service Procedures B-1

Appendix C. AMX CFire ROM Option C-1

AMX CFire TARGET GUIDE
Table of Figures

Page

Figure 1.2-1 AMX Include Files .. 2
Figure 1.2-2 AMX Assembler Source Files ... 2
Figure 1.2-3 AMX C Source Files ... 3
Figure 1.4-1 AMX Design Constants ... 5
Figure 3.2-1 AMX Vector Table and Vector Numbers 14
Figure 4.1-1 Configuration Manager Screen Layout 22
Figure A.1-1 AMX Target Parameter File ... A-1

AMX CFire Target Guide KADAK rev4 1

1. Getting Started with AMX CFire

1.1 Introduction
The AMX™ Multitasking Executive is described in the AMX User's Guide. This target
guide describes AMX CFire which operates on the Motorola MCF5xxx and all
architecturally compatible processors.

Throughout this manual, the term ColdFire refers specifically to the Motorola MCF5xxx
families of processors and all processors which are exact replicas. When distinctions are
not important, the term ColdFire is used to reference any processor which has the general
characteristics of these families. When distinctions are important, the processors are
identified explicitly.

The purpose of this manual is to provide you with the information required to properly
configure and implement an AMX CFire real-time system. It is assumed that you have
read the AMX User's Guide and are familiar with the architecture of the ColdFire
processor.

Installation

AMX CFire is delivered ready for use on a PC or compatible running Microsoft®
Windows®. To install AMX, follow the directions in the Installation Guide. All AMX
files required for developing an AMX application will be installed on disk in the
directory of your choice. All AMX source files will also be installed on your disk.

AMX Tool Guides

This manual describes the use of AMX in a tool set independent fashion. References to
specific assemblers, compilers, librarians, linkers, locators and debuggers are purposely
omitted. For each tool set with which AMX CFire has been tested by KADAK, a
separate chapter in the AMX Tool Guide is provided.

2 rev7 KADAK AMX CFire Target Guide

1.2 AMX Files
AMX is provided in C source format to ensure that regardless of your development
environment, your ability to use and support AMX is uninhibited. AMX also includes a
small portion programmed in ColdFire assembly language.

Figures 1.2-1, 2 and 3 summarize the AMX modules provided with AMX CFire. The
AMX product manifest (file MANIFEST.TXT) is a text file which indicates the current
AMX revision level and lists the AMX modules which are provided with the product.

File Name Module

CJ512 .H Generic include file
CJ512APP.H Custom application definitions
CJ512CC .H C dependent definitions
CJ512EC .H AMX error code definitions
CJ512IF .H C and target interface prototypes
CJ512KC .H Private AMX constants
CJ512KF .H AMX service procedure prototypes
CJ512KP .H Private AMX prototypes
CJ512KS .H Private AMX structure definitions
CJ512KT .H Target processor definitions
CJ512KV .H AMX version specification
CJ512SD .H AMX application structure definitions
CJ512TF .H Target dependent prototypes

CJZZZ .H Copy of generic include file CJ512.H
used for portability

CHxxxxx .H Definitions for common timer (GPT, PIT)
and serial I/O (UART) chips

Figure 1.2-1 AMX Include Files

File Name Module

CJ512K .DEF Private AMX assembly language definitions
CJ512KQ .S Private AMX math procedures
CJ512KR .S AMX Interrupt Supervisor
CJ512KS .S AMX Task Scheduler
CJ512MXA.S Message Exchange Manager constants
CJ512TDC.S Time/Date Manager constants
CJ512UA .S Target processor and C support (part 1)
CJ512UB .S Target processor and C support (part 2)

Figure 1.2-2 AMX Assembler Source Files

AMX CFire Target Guide KADAK rev7 3

File Name Module

CJ512KA .C Kernel task services
CJ512KB .C General task services
CJ512KBR.C
CJ512KC .C Timer Manager
CJ512KCR.C
CJ512KD .C Task management services
CJ512KDR.C
CJ512KE .C Task termination services
CJ512KF .C Suspend/resume task
CJ512KG .C Time slice services
CJ512KH .C Task status
CJ512KI .C Enter and Exit AMX
CJ512KJ .C General object access
CJ512KK .C AMX Vector Table access
CJ512KL .C Private AMX list manipulation
CJ512KM .C AMX task scheduler hook services
CJ512KX .C AMX Kernel Task

CJ512CL .C Circular List Manager
CJ512LM .C Linked List Manager

CJ512BM .C Buffer Manager
CJ512BMR.C
CJ512EM .C Event Manager
CJ512EMR.C
CJ512RM .C Semaphore Manager (resources)
CJ512SM .C Semaphore Manager
CJ512SMR.C
CJ512MB .C Mailbox Manager
CJ512MBR.C
CJ512MF .C Flush mailbox and message exchange
CJ512MM .C Memory Manager
CJ512MMR.C
CJ512MX .C Message Exchange Manager
CJ512MXR.C

CJ512TDA.C Time/Date Manager
CJ512TDB.C Time/Date formatter

CJ512UF .C Launch and leave AMX

CJ512XTA.C Message exchange task services
CJ512XTB.C Message exchange task termination

CHxxxxxT.C Clock drivers for common timer (GPT, PIT) chips
CHxxxxxS.C Sample drivers for common serial I/O (UART) chips

Figure 1.2-3 AMX C Source Files

4 KADAK AMX CFire Target Guide

1.3 AMX Nomenclature
The following nomenclature standards have been adopted throughout the AMX Target
Guide.

Numbers used in this manual are decimal unless otherwise indicated. Hexadecimal
numbers are indicated in the format 0xABCD.

The terminology A(Table XYZ) is used to define addresses. It is read as "the address of
Table XYZ".

Read/write memory is referred to as RAM. Read only memory (non-volatile storage) is
referred to as ROM.

AMX symbol names and reserved words are identified as follows:

cjkkpppp AMX C procedure name pppp for service of class kk
cjxtttt AMX structure name of type tttt
xttttyyy Member yyy of an AMX structure of type tttt

CJ_ID AMX object identifier (handle)
CJ_ERRST Completion status returned by AMX service procedures
CJ_CCPP Procedures use C parameter passing conventions
CJ_ssssss Reserved symbols defined in AMX header files

CJ_ERxxxx AMX Error Code xxxx
CJ_WRxxxx AMX Warning Code xxxx
CJ_FExxxx AMX Fatal Exit Code xxxx

CJ512xxx.xxx AMX CFire filenames
CJZZZ.H Generic AMX include file

The generic include file CJZZZ.H is a copy of file CJ512.H which includes the subset of
the AMX CFire header files needed for compilation of your AMX application C code.
By including the file CJZZZ.H in your source modules, your AMX application becomes
readily portable to other target processors.

Throughout this manual code examples are presented in lower case. File names are
shown in upper case. C code assumes that an int is 32 bits as is common for most C
compilers for the ColdFire processor.

Processor registers are referenced using the software names specified by Motorola.

D0, D1, D2, D3, D4, D5, D6, D7
A0, A1, A2, A3, A4, A5, A6, A7
PC, SP = A7
SR = status register, CC = flags (condition code)

AMX CFire Target Guide KADAK 5

1.4 AMX CFire Target Specifications
AMX CFire was initially developed and tested using the Motorola MCF5206 and
MCF5307 processors on a variety of Motorola evaluation boards. However, the AMX
CFire design criteria fully encompass the Motorola ColdFire processor family
requirements.

AMX uses a set of design constants which vary according to the constraints imposed by
each target processor. When operating on the ColdFire processor, these design constants
assume the values listed in Figure 1.4-1.

Symbol Purpose

CJ_CCISIZE Size of integer is 4 bytes (32 bits)
Event group supports 32 event flags per group

CJ_ID AMX id (handle) is a 32 bit unsigned integer
CJ_ERRST AMX error codes are 32 bit signed integers

CJ_MINMSZ Minimum AMX message size is 12 bytes
CJ_MAXMSZ Default AMX message size is 12 bytes
CJ_MINKG Minimum number of AMX message envelopes is 10

CJ_MINKS Minimum Kernel Stack is 256 bytes
CJ_MINIS Minimum Interrupt Stack is 256 bytes
CJ_MINTKS Minimum task storage (including TCB) is 512 bytes

CJ_MINBFS Minimum AMX buffer size is 8 bytes
CJ_MINUMEM Minimum AMX memory block size is 16 bytes
CJ_MINSMEM Minimum AMX memory section size is 128 bytes

Figure 1.4-1 AMX Design Constants

6 KADAK AMX CFire Target Guide

1.5 Launch Requirements
The ColdFire processor must be properly configured for use before AMX is launched.
The manner in which this is accomplished will depend on your target hardware
implementation and on the startup code provided with your C compiler.

AMX does not include bootstrap code to initialize the ColdFire processor. It is assumed
that you will have a boot ROM present which configures the ColdFire processor for your
specific hardware configuration and begins program execution at the entry to your C
startup code.

During development, you may be using a ROM monitor provided by the processor
vendor or by the toolset supplier. The ROM monitor automatically initializes the
processor at power on. The monitor is then used to download your AMX application and
start execution at the entry point to the C startup code. Eventually your main C program
is called and AMX can be launched by your call to cjkslaunch.

Once your application has been tested, you may choose to replace the ROM monitor and
the C startup code with your own initialization code. The manner in which you do this is
outside the scope of this manual.

Operating Mode

AMX requires that the processor be set to supervisor mode. The processor is in
supervisor mode when the supervisor/user state bit S is 1 in the status register (SR). This
is the default state when the processor is reset.

Interrupt State

Interrupts can be enabled or disabled on entry to AMX. Set the interrupt priority mask in
the status register to disable (0x0600) or enable (0x0000) external interrupts. AMX will
disable interrupts during its startup initialization. AMX will enable interrupts prior to
calling your application Restart Procedures.

If you launch AMX with interrupts enabled, be sure that all interrupt sources are either
disabled or externally masked off. You must not enable or unmask any interrupt source
until you have installed an AMX Interrupt Service Procedure to properly service the
device. This subject is described in more detail in Chapters 3 and 4.

For ColdFire and architecturally similar processors, AMX requires that the processor be
set to interrupt mode. The processor is in interrupt mode when the master/interrupt
state bit M is 0 in the status register (SR). This is the default state when the processor is
reset.

Some ColdFire processors include a Vector Base Register (VBR) which must be
initialized with the address of the Exception Vector Table. AMX can be configured to do
this initialization at launch time. Alternatively you can initialize the VBR prior to
launching AMX and allow AMX to read the VBR (if possible) without modifying it.

AMX CFire Target Guide KADAK rev8 7

Trace Controls

AMX alters the state of the status register (SR) whenever it enables or disables interrupts.
When AMX enables or disables interrupts, it also clears the trace control bit (T) to 0.
Consequently, you may not be able to use your debugger to single step trace through
private AMX code sequences.

ColdFire Stack Use

The ColdFire begins execution in supervisor mode and interrupt mode using the initial
interrupt stack specified by vector number 0 in the Exception Vector Table. Your
bootstrap code or C startup code may switch to an alternate stack. Once AMX is
launched, it abandons the startup stack. AMX only uses the stacks allocated by you in
your AMX System Configuration Module. To accomplish this feat on processors which
support multiple stacks, AMX always executes in the interrupt mode (M = 0 in SR).

Instruction and Data Caching

The MCF5206e includes a 4096-byte instruction cache but no data cache.
The MCF5307 includes an 8192-byte unified instruction and data cache.
Other ColdFire processors also include varying amounts of instruction and data cache.

If your AMX Target Parameter File (see Chapter 4) targets one of the supported
processors, AMX will automatically flush and enable both caches when AMX is
launched. Alternatively, you can configure AMX to ignore the caches during the launch.
AMX provides procedures which you can use to enable or disable the caches.

For example, if you disable both caches in your main program and configure AMX to
ignore the cache, you can simplify the initial testing of your application or overcome
caching problems which may be encountered if your debugger cannot properly handle
cached operation.

Included with AMX CFire is a board support module for each of the boards on which
AMX has been exercised at KADAK. These modules include a board initialization
function chbrdinit which sets up the board as required for use by KADAK. The
function chbrdinit includes a code sequence to initialize and disable the instruction and
data caches.

The main function in the AMX Sample Program calls the board initialization function
chbrdinit in the board support module to initialize the board prior to launching AMX.
Although chbrdinit includes code to initialize the caches, the code is actually skipped
(using a branch instruction to bypass the code) so that caches are not altered unless you
so desire. If you want the caches to be initialized and left disabled, edit the board support
source file to delete the branch instruction and allow the cache initialization code to be
executed. Instructions are provided in the file.

You may choose not to use one of the board support modules provided with AMX but
may wish to initialize the caches. If so, you should examine the source code of function
chbrdinit in the most applicable board support module to see an illustration of the
proper cache setup sequence.

8 rev8 KADAK AMX CFire Target Guide

You must be aware that, on processors which utilize a ColdFire Memory Management
Unit (MMU), successful cache operation will depend on proper setup of the MMU. For
example, if the MMU does not properly control cached access to memory and devices,
you may find that device I/O reads and writes end up being cached, resulting in failure of
the device to operate as expected.

AMX does not manipulate the MMU. If you configure AMX to enable caching during
the launch, then you must ensure that the MMU is properly initialized to meet your
hardware memory addressing specifications prior to launching AMX. The AMX Sample
Program purposely leaves the caches unaltered to avoid possible cache related problems
during your initial use of AMX in your hardware environment.

Memory Management Unit (MMU)

Some ColdFire processors may include a Memory Management Unit (MMU) to support a
demand-paged virtual memory environment. AMX does not support the ColdFire
memory management unit.

Most ColdFire processors do not include a memory management unit and allow direct
access to the full 20, 24 or 32-bit address space supported by the particular processor.

Your AMX application code and data must reside within the memory address ranges
allowed by the particular ColdFire processor which you are using. The ColdFire MMU,
if present, must be setup prior to launching AMX. In most cases, your boot ROM or C
startup code will configure the ColdFire MMU for your specific hardware configuration
prior to entry to your main() program.

Warning!

Do not enable the memory caches if the MMU has not been
initialized to provide proper cached access to memory.

Big or Little Endian

AMX CFire adheres to the big endian model in which the most significant byte of a word
(long) is stored in the lowest byte address.

Be aware that AMX for other processors may be big or little endian. If you intend to port
your AMX application to other processors, then avoid using coding techniques which are
endian dependent.

AMX CFire Target Guide KADAK rev4 9

2. Program Coding Specifications

2.1 Task Trap Handler
Unlike the M68000 processor, not all ColdFire processors provide exceptions for faults
such as arithmetic overflow, integer division by zero or array bounds violations.
Consequently, AMX CFire does NOT support AMX task traps as found in other AMX
implementations.

If you are porting an AMX application from some other target processor, your Task Trap
Handlers from that application will never be executed.

10 KADAK AMX CFire Target Guide

2.2 Task Scheduling Hooks
There are four critical points within the AMX Task Scheduler. These critical points
occur when:

a task is started
a task ends
a task is suspended
a task is allowed to resume.

AMX allows a unique application procedure to be provided for each of these critical
points. Pointers to your procedures are installed with a call to procedure cjkshook. You
must provide a separate procedure for each of the four critical points. Since these
procedures execute as part of the AMX Task Scheduler, their operation is critical. These
procedures must be coded in assembler using techniques designed to ensure that they
execute as fast as possible.

The AMX Task Scheduler calls each of your procedures with the same calling
conventions.

Upon entry to your scheduling procedures, the following conditions exist:

Interrupts are disabled and must remain so.
The Task Control Block address is in register A1.
The stack pointer in register SP references the task's stack.
The return address is on the stack at (SP).
Registers D0, D1, A0, A1, A2 and A3 are free for use.
Condition code flags in the status register (SR) can be altered.
All other registers must be preserved.

Your procedures receive a pointer to the Task Control Block (TCB) of the task which is
being started, ended, suspended or resumed. If you include AMX header file
CJ512K.DEF in your assembly language module, you can reference the private region
within the TCB reserved for your use as XTCBUSER(A1).

Your procedures are free to temporarily use the task's stack.

AMX CFire Target Guide KADAK 11

3. The Processor Interrupt System

3.1 Operation
The ColdFire classifies all internal and external sources of interruption as exceptions.
The processor automatically determines the cause of the exception and then branches
indirectly through entries in the processor Exception Vector Table to an appropriate
exception specific procedure.

The particular procedures which service internal or external device interrupt requests are
called Interrupt Service Procedures. All other procedures are referred to as exception
service procedures.

Upon entry to any Interrupt Service Procedure or exception service procedure the
processor state is determined by the particular exception.

Device Interrupt Service

A subset of the exception vectors are reserved for the control of devices external to, or
embedded in, the processor. These vectors include:

Vector 15 Uninitialized interrupt vector
Vector 24 Spurious interrupt
Vectors 25 Interrupt priority level 1 (lowest)

to
30 Interrupt priority level 6 (highest)

Vector 31 Interrupt priority level 7 (Non-Maskable)
Vectors 64 User assignable interrupts

to 255

The external interrupt facility is enabled by setting the interrupt mask in the processor
status register (SR) to 0 thereby enabling interrupts from priority levels 1 to 6. Note that
interrupt priority level 7 cannot be inhibited.

The external interrupt facility is disabled by setting the interrupt mask in the processor
status register (SR) to 6 thereby inhibiting interrupts from priority levels 1 to 6 inclusive.
AMX never sets the processor interrupt mask to 7.

When an interrupt occurs at priority level n, the processor pushes zero or more words of
processor dependent information on the current stack. The return address (current
Program Counter) and the content of the processor status register are then pushed onto
the current stack. The processor interrupt mask is set to n thereby disabling all external
interrupts of priority less than or equal to n.

The interrupting device then identifies the interrupt source. In most cases, the device lets
the processor use the interrupt priority level n vector. However, devices can be designed
to present the processor with their own vector number. Any vector number in the range 0
to 255 is possible, but vectors 64 to 255 are reserved for this purpose. Programmable
devices which have not been programmed with their particular vector number usually
respond with vector number 15 signifying an uninitialized interrupt. If no device
responds to the processor's demand for interrupt acknowledgment, the processor uses the
spurious interrupt vector number 24.

12 KADAK AMX CFire Target Guide

Default Exception Service Procedures

AMX provides default service procedures for most exceptions. AMX treats such
exceptions as fatal. AMX calls its Fatal Exception Procedure cjksfatalexh in module
CJ512UF.C identifying the exception and the machine state at the time of the exception.
You are free to modify this procedure to meet the needs of your particular application.

The default Fatal Exception Procedure provided with AMX simply returns to the AMX
exception handler with the AMX fatal exit code CJ_FETRAP indicating that a fatal
exception has occurred. AMX then passes the fatal exit code on to the Fatal Exit
Procedure cjksfatal (also in module CJ512UF.C) signifying that a fatal exception has
been detected and serviced but deemed unrecoverable.

If the Fatal Exception Procedure cjksfatalexh returns an error code of CJ_EROK to
AMX indicating that the cause of the exception has been remedied, AMX will restore the
machine state and resume execution.

The Fatal Exception Procedure, located in module CJ512UF.C, is written in C as
follows. Upon entry, interrupts are in the state determined by the particular exception.

#include "CJZZZ.H" /* AMX Headers */

void CJ_CCPP cjksfatalexh(
struct cjxregs *regp, /* A(Register structure) */
int vnum, /* Vector number */
void *faultfp) /* A(Fault frame) */
{

:
Process the error
:
}

The state of each register at the time of the fault is stored on the stack in an AMX register
structure cjxregs. Parameter regp is a pointer to that structure. Structure cjxregs is
defined in AMX header file CJ512KT.H. Note that the SR register copy in the register
array reflects the state of the status register after the exception occurred.

A pointer to the ColdFire fault frame is provided as parameter faultfp. This pointer is
the ColdFire stack pointer (SP) after the fault has occurred. Fault frame members can be
referenced as follows:

*((CJ_T16U *)faultfp) is the frame format type and vector number
*((CJ_T16U *)faultfp + 1) is the SR saved in the fault frame
*((CJ_T32U *)faultfp + 1) is the A(fault instruction)

The register values in structure cjxregs can be examined and, in rare circumstances and
with extreme care, can be modified. If error code CJ_EROK is returned to AMX,
execution will resume with registers set to the values in the structure referenced by regp.

The Fatal Exception Procedure executes in the machine context in effect at the time the
exception occurred. Hence, the procedure may be executed while in an application task,
while servicing a device interrupt or while in the AMX kernel. Consequently, the
procedure is NOT able to use any AMX services except those (such as list manipulation
or processor support) which do not depend on the integrity of private AMX data.

AMX CFire Target Guide KADAK 13

3.2 AMX Vector Table
The ColdFire processor provides an Exception Vector Table, often referred to as the
AMX Vector Table, through which device interrupts are vectored and processor faults are
trapped. The position of entries in the table and the vector numbers used to reference
them are dictated by Motorola.

AMX provides a set of cjksixxxx service procedures to allow you to dynamically access
or modify entries in the AMX Vector Table. The Motorola vector numbers must be used
in all calls to these procedures to identify entries in the table.

Device Interrupts

AMX uses the AMX Vector Table to maintain pointers to Interrupt Service Procedures
for all of the device interrupts to which the processor will respond. AMX does not
provide a default Interrupt Service Procedure for every device interrupt. However, AMX
does provide a default exception service procedure for the spurious interrupt (vector
number 24) and the uninitialized interrupt (vector number 15).

Processor Exceptions

AMX maintains entries in the AMX Vector Table for all of the processor exceptions for
which AMX assumes responsibility. These entries in the Vector Table are identified by
Motorola's exception vector numbers which are defined in AMX header file CJ512KT.H.
Figure 3.2-1 summarizes the exception vector mnemonics.

A 32-bit mask in your Target Parameter File is used to specify which of the possible
exceptions you wish AMX to service. The mask bits are defined in Figure 3.2-1. The
AMX Configuration Builder (see Chapter 4) puts a directive in your Target Parameter
File to specify the mask required to meet your configuration requirements.

If an enable mask bit is not defined in Figure 3.2-1 for a particular exception, then AMX
will not provide a default exception service procedure for that exception. For example,
AMX does not provide service for the TRAP n vectors (vector numbers 32 to 47). Hence,
all software traps are available for use by your application.

AMX does not provide default exception service procedures for any of the entries which
Motorola has declared as undefined but reserved.

14 rev8 KADAK AMX CFire Target Guide

Vector Vector Enable
Name Number Mask Exception

CJ_PRVNRES 0, 1 Reset
CJ_PRVNBE 2 0x00000004 Bus error (access fault)
CJ_PRVNAE 3 0x00000008 Address error
CJ_PRVNII 4 0x00000010 Illegal instruction
CJ_PRVNZD 5 0x00000020 Zero divide (Note 1)

6 reserved
7 reserved

CJ_PRVNPV 8 0x00000100 Privilege violation
CJ_PRVNTR 9 0x00000200 Trace
CJ_PRVNLA 10 0x00000400 Line 1010 (A) emulator
CJ_PRVNLF 11 0x00000800 Line 1111 (F) emulator
CJ_PRVNDB 12 0x00001000 Debug interrupt
CJ_PRVNPCDB 13 0x00000020 PC debug interrupt (Note 1)
CJ_PRVNFE 14 0x00004000 Format error
CJ_PRVNUI 15 0x00008000 Uninitialized interrupt

16 to 23 reserved

CJ_PRVNSI 24 0x00000002 Spurious interrupt
25 to 31 Level 1 to 7 interrupt autovectors

CJ_PRVNTT 32 to 47 TRAP 0 to 15 Table

Floating Point Exceptions (Note 1)
CJ_PRVNFPBS 48 0x01000000 FP Branch or set on unordered condition
CJ_PRVNFPIN 49 0x02000000 FP Inexact result
CJ_PRVNFPDZ 50 0x04000000 FP Divide by zero
CJ_PRVNFPUN 51 0x08000000 FP Underflow
CJ_PRVNFPOP 52 0x10000000 FP Operand Error
CJ_PRVNFPOV 53 0x20000000 FP Overflow
CJ_PRVNFPSN 54 0x40000000 FP Signalling NAN
CJ_PRVNFPUD 55 0x80000000 FP Unimplemented data type

56 to 60 reserved
CJ_PRVNNI 61 Unsupported instruction (Note 1)

62 reserved
63 reserved

64 to 255 User defined

Note 1: Not implemented by all ColdFire processors.

Figure 3.2-1 AMX Vector Table and Vector Numbers

AMX CFire Target Guide KADAK 15

3.3 AMX Interrupt Priority and NMI
The ColdFire family of processors offers inherent interrupt priority ordering. The AMX
Interrupt Supervisor supports this feature and allows the nesting of interrupts for fast
response to high priority events.

The ColdFire interrupt priority mask in the status (SR) register establishes the current
interrupt priority. Tasks run at interrupt priority level 0 with all interrupt sources
enabled. Some interrupts may be specifically disabled by an external interrupt controller.

Tasks must NOT alter the interrupt priority level to any level other than 0 (enabled) or
6 (disabled). Doing so will interfere with the interrupt nesting support provided by
AMX.

Interrupt Service Procedures run at the interrupt priority level dictated by the interrupt
source. An ISP must NOT set the interrupt priority level to any level numerically lower
than the level of the interrupt which it is servicing.

Non-Maskable Interrupt

The Motorola ColdFire processor provides a non-maskable priority level 7 interrupt
(NMI). This interrupt cannot be inhibited by software. The processor will respond to
any transition from interrupt request levels 0 to 6 to level 7 by generating a non-maskable
interrupt. When the non-maskable interrupt occurs, the processor automatically saves
zero or more processor dependent parameters, the return address and the processor status
register on the current stack. The processor then vectors to a memory address determined
by the level 7 interrupt autovector (vector number 31) in the Exception Vector Table.

You have complete control over the non-maskable interrupt ISP. Usually, the NMI
interrupt is used to signal a catastrophic event such as a pending loss of power. The NMI
ISP must not use any AMX services. The ISP must process the interrupt in an
application-dependent fashion, restore all registers and return to the point of interruption
if feasible. This ISP must assure that the interrupt facility is restored according to its
state at the time the non-maskable interrupt occurred.

Warning!

Because the occurrence of an NMI interrupt cannot be
controlled, the NMI interrupt can occur at any instant,
including within critical sections of AMX.

Consequently, the NMI ISP cannot use AMX service
procedures for task communication.

16 rev3 KADAK AMX CFire Target Guide

3.4 Conforming ISPs
A conforming ISP consists of an ISP root and a device Interrupt Handler. The ISP root is
created in your Target Configuration Module by the AMX Configuration Generator using
the information provided in your Target Parameter File (see Chapter 4).

The address of the ISP root must be installed in the AMX Vector Table. You must
provide a Restart Procedure or task which calls AMX procedure cjksivtwr or cjksivtx
to install the ISP root pointer into the AMX Vector Table prior to enabling interrupt
generation by the device.

The ISP root is the actual Interrupt Service Procedure which is executed by the processor
when the interrupt occurs. The ISP root calls the AMX Interrupt Supervisor to indicate
that interrupt service has begun.

The ISP root then calls the device Interrupt Handler to dismiss the interrupt request and
service the device. Upon return from the Interrupt Handler, the ISP root informs the
Interrupt Supervisor that the interrupt service is complete. The Interrupt Supervisor
either resumes execution at the point of interruption or invokes the Task Scheduler to
suspend the interrupted task in preparation for a context switch. The path taken is
determined by the actions initiated by your Interrupt Handler.

Interrupt Handlers can be written as C procedures with or without a single 32-bit formal
parameter. The parameter, if needed, is identified in your definition of the ISP root in
your Target Parameter File (see Chapter 4.3).

Upon entry to your Interrupt Handler written in C, the following conditions exist:

Interrupts are enabled at priority n (0 to 6) where n is the priority at which
the interrupt occurred.
The stack pointer in register SP references the AMX Interrupt Stack.

The Interrupt Handler can also be written in assembly language. Use assembly language
if speed of execution is critical. Upon entry to an Interrupt Handler written in assembly
language, the following conditions exist:

Your Interrupt Handler parameter is in register D1.
The stack pointer in register SP references the AMX Interrupt Stack.
The return address is on the stack at (SP).
Registers D0, D1, A0 and A1 are free for use.
Condition code flags in the status register (SR) can be altered.
All other registers must be preserved.

AMX CFire Target Guide KADAK 17

The following examples illustrate how simple an Interrupt Handler can be.

/* The ISP root definition in the Target Parameter File is as follows:*/
/* ...ISPC deviceisp,deviceih,26,0,0 */
/* The ISP root is given the public name deviceisp */
/* The Interrupt Handler is named deviceih */
/* The device interrupts on vector number 26 (level 2) */

void CJ_CCPP deviceih(void)
{

local variables, if required
:
Clear the source of the interrupt request.
Perform all device service.
:
}

/* Assume dcbinfo is some application device control block structure. */
/* Assume deviceXdcb is a structure variable defined as */
/* "struct dcbinfo deviceXdcb;". */
/* */
/* The ISP root definition in the Target Parameter File is as follows:*/
/* ...ISPC dcb_isp,dcb_ih,30,deviceXdcb,1 */
/* The ISP root is given the public name dcb_isp */
/* The Interrupt Handler is named dcb_ih */
/* The device interrupts on vector number 30 (level 6) */
/* deviceXdcb is the name of the public structure variable which */
/* contains information about the specific device. */

void CJ_CCPP dcb_ih(struct dcbinfo *dcbp)
{

local variables, if required
:
Use device control block pointer dcbp to access structure variable
deviceXdcb to determine device addresses.
Clear the source of the interrupt request.
Perform all device service.
:
}

18 KADAK AMX CFire Target Guide

3.5 Nonconforming ISPs
The ColdFire family of processors provides an interrupt priority ordering mechanism
which permits the use of nonconforming ISPs within an AMX system. Since
nonconforming ISPs bypass the AMX Interrupt Supervisor, they cannot make use of any
AMX services.

Nonconforming ISPs run at the interrupt priority level dictated by the interrupt source. A
nonconforming ISP must NOT set the interrupt priority level to any level numerically
lower than the level of the interrupt which it is servicing. Higher priority interrupts are
only allowed if the corresponding ISPs are also nonconforming ISPs.

A nonconforming ISP must NOT allow an interrupt from ANY higher priority
conforming ISP. Remember that, in this context, the ISP for the device which generates
the AMX clock interrupt is considered to be a conforming ISP.

Upon entry to a nonconforming ISP the processor state matches its state at the time of the
interrupt. The processor is in supervisor mode with interrupts disabled at priority level n
(0 to 6) in the status register. No registers are free for use. All registers must be
preserved.

The nonconforming ISP executes on the stack in effect at the time of the interrupt.
Hence, the nonconforming ISP may execute on any task stack including the AMX Kernel
Task's stack. A nonconforming ISP will execute on the AMX Interrupt Stack if the
nonconforming ISP interrupts a conforming ISP.

The nonconforming ISP must service the device to remove the interrupt request and
dismiss the interrupt with an RTE instruction.

AMX CFire Target Guide KADAK rev4 19

3.6 Processor Vector Initialization
Whenever an internal or external device interrupt occurs, the ColdFire processor
unconditionally vectors to a unique memory address determined by an entry in the
processor Exception Vector Table. The code located at that address is called an Interrupt
Service Procedure.

Whenever an exception occurs, the ColdFire processor also unconditionally vectors to a
unique memory address determined by an entry in the processor Exception Vector Table.
The code located at that address is called an exception handler.

Your Target Parameter File defines whether the Exception Vector Table is in ROM or
RAM. The Target Parameter File further qualifies whether or not AMX is allowed to
modify the table if it is in RAM.

If the table is declared to be alterable, AMX will allow you to dynamically install
pointers to ISPs and exception handlers into the Exception Vector Table.

If the Exception Vector Table is in RAM and the table is declared to be alterable, AMX
will install pointers to the AMX Exception Supervisor into selected exception vectors in
the Exception Vector Table.

If the Exception Vector Table is unalterable (in ROM or simply constant by design), then
it is your responsibility to initialize the vector table to meet your requirements. The
address of a unique AMX exception handler must be installed in each entry in the
Exception Vector Table for which AMX is to be responsible.

Each AMX exception handler is located at an offset from entry point cj_kdevt in your
Target Configuration Module. Each offset is a multiple of 8 bytes. The AMX exception
mask identifies the specific exceptions which AMX must handle. An exception is
supported if its mask bit (see Figure 3.2-1) is enabled in the AMX exception mask. The
AMX exception handler for the exception identified by mask bit j is located at byte
address cj_kdevt+(i*8) where i is one less than the sum of the enabled bits in the
AMX exception mask, counted from bit 0 to bit j inclusive.

For example, if vectors 2 (bus error), 3 (address error) and 8 (privilege violation) are the
only vectors to be serviced by AMX, the AMX exception mask will have value
0x0000010C. The AMX bus error exception handler will be found at entry point
cj_kdevt (enable mask is 0x0004, j is 2, the bit sum is 1 and i is therefore 0). The
AMX privilege violation exception handler will be found at entry point cj_kdevt+(2*8)
(enable mask is 0x0100, j is 8, the bit sum is 3 and i is therefore 2).

You must also initialize entries in the Exception Vector Table for each interrupt which
your application can generate. For each interrupting device, you must install the address
of the device's Interrupt Service Procedure (ISP) into the device's entry in the vector
table. For each conforming ISP or clock ISP, the address is the pointer to the ISP root
named in your AMX Target Configuration Module. For prebuilt AMX clock drivers, you
can determine the ISP root name by examining the call to cjksivtx() in procedure
chclockinit() in the clock driver source module.

20 KADAK AMX CFire Target Guide

This page left blank intentionally.

AMX CFire Target Guide KADAK 21

4. Target Configuration Module

4.1 The Target Configuration Process
Every AMX application must include a Target Configuration Module which defines
the manner in which AMX is to be used in your target hardware environment. The
information in this file is derived from parameters which you must provide in your Target
Parameter File.

The Target Parameter File is a text file which is structured according to the
specification presented in Appendix A. You create and edit this file using the AMX
Configuration Builder following the general procedure outlined in Chapter 16 of the
AMX User's Guide. If you have not already done so, you should review that chapter
before proceeding.

Using the Builder

When AMX is installed on your hard disk, the AMX Configuration Manager for
Windows utility program and its related files are stored in directory CFGBLDW in your
AMX installation directory. To start the Configuration Manager, double click on its
filename, CJ512CM.EXE. Alternatively, you can create a Windows shortcut to the
manager's filename and then simply double click the shortcut's icon.

To create a new Target Parameter File, select New Target Parameter File from the File
menu. The Configuration Manager will create a new, as yet unnamed, file using its
default AMX target parameters. When you have finished defining or editing your target
configuration, select Save As... from the File menu. The Configuration Manager will save
your Target Parameter File in the location which you identify using the filename which
you provide.

A good starting point is to copy one of the Sample Target Parameter Files CJSAMTCF.UP
provided with AMX into file HDWCFG.UP. Choose the file for the evaluation board which
most closely matches your hardware platform. Then edit the file to define the
requirements of your target hardware.

To open an existing Target Parameter File such as HDWCFG.UP, select Open... from the File
menu and enter the file's name and location or browse to find the file. When you have
finished defining or editing your target configuration, select Save from the File menu.
The Configuration Manager will rename your original Target Parameter File to be
HDWCFG.BAK and create an updated version of the file called HDWCFG.UP.

To direct the Configuration Manager to use its Configuration Generator utility to produce
an updated copy of your Target Configuration Module, say HDWCFG.S, select Generate...
from the File menu. If necessary, the path to the template file required by the generator to
create your Target Configuration Module can be defined using the Templates... command
on the File menu.

The assembly language Target Configuration Module must be assembled as described in
the toolset specific chapter of the AMX Tool Guide for inclusion in your AMX system.
The assembler will generate error messages which exactly pin-point any inconsistencies
in the parameters in your Target Parameter File.

22 rev4 KADAK AMX CFire Target Guide

Screen Layout

Figure 4.1-1 illustrates the Configuration Manager's screen layout once you have begun
to create or edit a Target Parameter File. The title bar identifies the Target Parameter File
being created or edited. Below the title bar is the menu bar from which the operations
you wish the Manager to perform can be selected. Below the menu bar is an optional
Toolbar with buttons for many of the most frequently used menu commands.

At the bottom of the screen is the status bar. As you select menu items, a brief
description of their purpose is displayed in the status bar. If the Configuration Manager
encounters an error condition, it presents an error message on the status bar describing
the problem and, in many cases, the recommended solution.

Along the left margin of the screen are a set of one or more selector icons. These icons
identify the type of output files which the Manager's Configuration Generator will
produce. The Target Configuration Module selector must be active to generate the Target
Configuration Module.

The center of the screen is used as an interactive viewing window through which you can
view and modify your target configuration parameters.

Figure 4.1-1 Configuration Manager Screen Layout

AMX CFire Target Guide KADAK 23

Menus

All commands to the Configuration Manager are available as items on the menus present
on the menu bar. The File menu provides the conventional New, Open, Save and
Save As... commands for creating and editing your Target Parameter File. It also provides
the Exit command.

When the Target Configuration Module selector icon is the currently active selector, the
Generate... command on the File menu can be used to generate your Target Configuration
Module. The path to the template file required by the generator to create this product can
be defined using the Templates... command on the File menu.

The Edit menu provides the conventional Cut, Copy, Paste and Undo editing commands.
It also includes an Undo Page command to restore the content of all fields on a property
page to undo a series of unwanted edits to the page. The Toolbar is hidden or made
visible using the View Toolbar command on the Edit menu.

The Help menu provides access to the complete AMX Configuration Manager reference
manual. Context sensitive help is also available by pressing the F1 function key or
clicking the ? button on the Toolbar.

Field Editing

When the Target Configuration Module selector icon is the currently active selector, the
Target Configuration Module's tabbed property sheet is displayed in the central region of
the screen. Each tab provides access to a particular property page through which your
target configuration parameters can be declared. For instance, if you select the ISP tab,
the Configuration Manager will present an ISP definition window (property page)
containing all of the parameters you must provide to completely define an Interrupt
Service Procedure.

Some fields are boolean options in which all you can do is turn the option on or off by
checking or unchecking the associated check box.

Some fields are option fields in which you must select one of a set of options identified
with radio buttons. Click on the option button which meets your preference.

Other fields may require numeric or text entry. Parameters are entered or edited in these
fields by typing new values or text to replace the current field content. Only displayable
characters can be entered. New characters which you enter are inserted at the current
cursor position in the field. Right and left arrow, backspace and delete keys may be used
to edit the field.

When you are altering a numeric or text field, you tell the Configuration Manager that
you are finished editing the field by striking the Enter key. At that point, the
Configuration Manager checks the numeric value or text string that you have entered for
correctness in the context of the current field. If the value or text string that you have
entered is invalid, an error indication is provided on the status bar at the bottom of the
screen suggesting how the fault should be corrected.

The Tab and Shift-Tab keys can also be used to complete the editing of a field and move to
the next or previous field.

24 KADAK AMX CFire Target Guide

If you have modified some of the fields on a property page and then decide that these
modified values are not correct, use the Undo Page command on the Edit menu or Toolbar
to force the Configuration Manager to restore the content of all fields on the page to the
values which were in effect when you moved to that property page.

When you go to save your Target Parameter File or prepare to move to another property
page, the Configuration Manager will validate all parameters on the page which you are
leaving. If any parameters are incomplete or inconsistent with each other, you will be
forced to fix the problem before being allowed to proceed.

Add, Edit and Delete Objects

Separate property pages are provided to allow your definition of one or more objects such
as ISPs or null functions. Pages of this type include a list box at the left side of the
property page in which the currently defined objects are listed. At the bottom of the list
box there may be a counter showing the number of objects in the list and the allowable
maximum number of such objects.

Also below the list are two control buttons labeled Add and Delete. If the allowable
maximum number of objects is 0 or if all such objects have already been defined, the Add
button will be disabled. If there are no objects defined, the Delete button and all other
fields on the page will be disabled.

To add a new object, click on the Add button. A new object with a default identifier will
appear at the bottom of the list and will be opened ready for editing. When you enter a
valid identifier for the object, your identifier will replace the default in the object list.

To edit an existing object's definition, double click on the object's identifier in the object
list. The current values of all of that object's parameters will appear in the property page
and the object will be opened ready for editing.

To delete an existing object, click on the object's identifier in the object list. Then click
on the Delete button. Be careful because you cannot undo an object deletion.

The objects in the object list can be rearranged by dragging an object's identifier to the
desired position in the list. You cannot drag an object directly to the end of the list. To
do so, first drag the object to precede the last object on the list. Then drag the last object
on the list to precede its predecessor on the list.

AMX CFire Target Guide KADAK rev8 25

4.2 Target Configuration Parameters

General Parameters

The General Parameter window allows you to define the general operating characteristics
of your AMX system within your target hardware environment. The layout of the
window is shown in Figure 4.1-1 in Chapter 4.1.

CPU Type

Identify your processor architecture by selecting a processor from the available list. This
parameter is used to condition AMX to accommodate the operating characteristics of a
particular processor or architecture. The supported list of processors includes but is not
limited to:

5202, 5203, 5204, 5206, 5206e, 5216, 5235, 5249,
5271, 5272, 5275, 5280, 5282,
5307, 5407, 5475, 5485

AMX Launch

Most AMX applications are such that once AMX is launched the application runs
forever. For such applications, check this box. If your AMX launch is to be temporary,
uncheck this box. In this case, you will be able to shut down your AMX application and
return to your main program from which AMX was launched.

Enable Cache at Launch

If the processor or architecture indicated by field CPU Type has cache control, then,
before launching AMX, you must initialize the Memory Management Unit (MMU) to
condition the memory subsystem to meet the caching requirements of your system.

When AMX is launched, if this box is checked, AMX will enable the processor
instruction and data caches by calling the AMX cache support function cjcfhwbcache.

When AMX is launched, if this box is unchecked, AMX will not alter the state of the
processor instruction or data caches.

If the processor or architecture indicated by field CPU Type has no cache control, leave
this box unchecked.

Default Cache Control Register (CACR)

Since the Cache Control Register (CACR) can be written but not read, AMX cannot alter
the CACR content to manipulate the caches without affecting other control bits in the
register. You must provide the CACR value which defines the actual content of the
CACR register at the time your application launches AMX. If the processor indicated by
field CPU Type has no cache control, set this parameter to 0.

26 KADAK AMX CFire Target Guide

Vectors in RAM

In most cases, the processor Exception Vector Table will be located in alterable RAM at
address 0 or at some alternate address provided by you. Therefore check this box.

If your processor Exception Vector Table is in ROM, leave this box unchecked. In this
case, you must initialize the ROM vector table for AMX use as directed in Chapter 3.6.

Vectors Not Alterable

Even if the processor Exception Vector Table will be located in RAM, you can still
prevent AMX from altering it. To do so, check this box. In this case, be sure to initialize
the vectors for AMX use as directed in Chapter 3.6.

Vector Table Location

For most ColdFire processors, the Exception Vector Table is located in RAM at memory
address 0. However, some processors include a Vector Base Register (VBR) which can
be used to relocate the base of the Exception Vector Table elsewhere in memory.

If you wish AMX to derive the address of the Exception Vector Table, select derived
from the pull down list. If your selected processor has a VBR which can be read, AMX
will read the VBR at launch time to derive the address of the Exception Vector Table. If
you are using a processor that does not have a VBR, AMX will assume that the
Exception Vector Table is at address 0 as is appropriate for such processors.

If you wish AMX to set the address of the Exception Vector Table, select adjustable from
the pull down list and enter the base address for the table. Specify the hexadecimal
memory address of the alternate table. If your selected processor has a VBR, AMX will
install the specified base address into the VBR at launch time, thereby establishing that
address as the base address of the Exception Vector Table. If you are using a processor
that does not have a VBR, AMX will ignore the base address parameter and assume that
the Exception Vector Table is at address 0 as is appropriate for such processors.

If your selected processor has a VBR which cannot be read, select adjustable from the
pull down list and enter the base address for the table. Specify the hexadecimal memory
address of the table. AMX will install the specified base address into the VBR at launch
time, thereby establishing that address as the base address of the Exception Vector Table.

In some cases, your Exception Vector Table may be in ROM with support for a shadow
vector table in RAM. For example, assume that you use a ColdFire with ROM located at
address 0. The processor does not have a Vector Base Register; it assumes that the
Exception Vector Table is located at address 0. Now, assume that the ROM at address 0
includes a monitor which intercepts all interrupts and exceptions and dispatches each
according to entries in a shadow vector table located at address 0xF00000. For such a
case, select shadowed from the pull down list and enter the base address of the shadow
vector table (0xF00000 in this example). Specify the hexadecimal memory address of the
shadow vector table. AMX will ignore the VBR, if one exists, and assume that the
processor Exception Vector Table is at the specified base address.

AMX CFire Target Guide KADAK 27

Software I/O Delay

AMX provides a device I/O delay procedure cjcfhwdelay which is used by AMX board
support modules and sample device drivers to provide the necessary delay between
sequential references to a device I/O port. Such delay is often required to accommodate
long device access times when operating at very high processor clock frequencies.

Check this box to adjust the AMX software delay loop to match your hardware
requirements. Enter your best estimate of the processor's effective instruction execution
frequency. AMX will use this parameter to derive the loop count needed to provide a one
microsecond delay.

For example, if your processor executes at 40 MHz with no wait states for instruction
fetches and one clock cycle per instruction, enter a CPU clock frequency of 40 MHz.

If you are able to detect the processor frequency at run time, then you can dynamically
adjust this I/O delay procedure to match your target hardware without reconfiguring your
AMX application. To do so, enter a CPU frequency of 0 MHz. In this case, your main()
program must install the processor frequency value into long variable cjcfhwdelayf
prior to launching AMX.

Leave this box unchecked if you want the I/O delay procedure cjcfhwdelay to produce
no delay beyond that inherent in the procedure call and return.

28 rev4 KADAK AMX CFire Target Guide

Fatal Exceptions
The Target Configuration Module defines the processor exceptions which are to be
serviced by AMX and treated as fatal. These exceptions are specified by you by
checking the appropriate boxes in the Fatal Exception window. The layout of the
window is shown below.

This example allows AMX to service the bus error, address error, privilege violation,
format error, uninitialized interrupt and spurious interrupt exceptions as fatal exceptions.

This example leaves the illegal instruction, trace, line emulation and debug exceptions
free for use by a debugger. The zero divide exception (if present in the processor) is left
untouched by AMX, ready for service by a debugger or by your application.

AMX CFire Target Guide KADAK 29

4.3 Interrupt Service Procedure (ISP) Definitions
Your Target Configuration Module must include a device ISP root for each conforming
ISP which you intend to use in your application. The ISP roots are constructed for you
by the AMX Configuration Builder from ISP descriptions which you enter in the ISP
Definition window. The layout of the window is shown below.

To add an ISP definition, click on the Add button. A new ISP with a default ISP root
name of ---New--- will appear at the bottom of the ISP list and will be opened ready for
editing. When you enter a name for the ISP root, it will replace the default name in the
ISP list.

To edit an existing ISP definition, click on the name of the ISP root in the ISP list. The
ISP definition will appear in the property page and will be opened ready for editing.

To delete an existing ISP definition, click on the name of the ISP root in the ISP list.
Then click on the Delete button. Be careful because you cannot undo an ISP deletion.

30 KADAK AMX CFire Target Guide

ISP Type

At least one of your ISPs must service a clock interrupt which provides AMX with its
fundamental clock tick at the frequency and resolution defined in your AMX System
Configuration Module. To define your custom clock ISP, choose Clock Handler from the
pull down list. An alternate fast clock ISP can be provided by choosing Fast Clock
Handler as described in Chapter 4.4. Other AMX clock drivers can be selected from the
list presented when you click the Prebuilt Clock ISPs... button.

All other application ISPs must be conforming AMX ISPs which you define by choosing
AMX Compliant from the pull down list.

ISP Root

Edit the default name ---New--- to provide the name you wish to give to the ISP root.
The ISP root name is used to identify ISPs in the ISP list.

The ISP root is a function created by the AMX Configuration Builder in your Target
Configuration Module. The function entry point is declared with a public symbol defined
with the name you provide. The name must be unique and must conform to the symbol
naming conventions of your assembler.

Interrupt Handler

Enter the name of your device Interrupt Handler which will clear the device interrupt
request and service the device. This is the name of the procedure which will be called
from the ISP root by the AMX Interrupt Supervisor once the interrupt source has been
identified and the machine state preserved according to the conditions which existed at
the time of the interrupt. Your Interrupt Handler must be coded as described in
Chapter 3.4.

If your Interrupt Handler is coded in C, you may have to add a leading or trailing
underscore to the Interrupt Handler name which you enter in order to meet the C function
naming conventions of your C compiler.

Handler Language

Your Interrupt Handler can be coded in C or assembly language. Identify the language in
which your Interrupt Handler is written by picking C or Assembly from the pull down list.

AMX CFire Target Guide KADAK 31

Interrupt Handler Parameter

Your Interrupt Handler can be coded to receive a 32-bit parameter every time it is called.
The Parameter Type field is a pull down list used to identify what kind of parameter, if
any, your Interrupt Handler expects. If your Interrupt Handler has no need for a
parameter, set the Parameter Type to (none).

If your Interrupt Handler expects a numeric parameter, set the Parameter Type to Value
and enter the required unsigned, 32-bit hexadecimal numeric value into the Parameter
field.

If your Interrupt Handler parameter must be a pointer to a variable or function, set the
Parameter Type to Symbol and enter the name of the variable or function into the
Parameter field. The parameter must be a text string giving the name of a public symbol
(variable or function) defined in some module in your AMX application. The symbol's
32-bit value, as resolved by your linker, will be passed to your Interrupt Handler as its
parameter.

Prebuilt Clock ISPs

Clock drivers are provided with AMX for several common ColdFire interval timers. In
some cases, the AMX clock ISP can be prebuilt in your Target Configuration Module.
To select one of these clocks, click on the Prebuilt Clock ISPs... button. In the dialog box
which is presented, check the box for the particular clock driver which you wish to use.
If you do not wish to use a prebuilt clock ISP, leave all boxes unchecked.

32 KADAK AMX CFire Target Guide

4.4 Defining a Fast Clock ISP
At least one of your ISPs must service a clock interrupt which provides AMX with its
fundamental clock tick at the frequency and resolution defined in your AMX System
Configuration Module. For many applications, your clock ISP will just be a standard
AMX conforming ISP defined in the ISP Definition window. It is distinguished from all
other ISPs by picking Clock Handler as its ISP Type.

Rarely does the Interrupt Handler for your AMX clock ISP have to do anything except
dismiss the clock interrupt request. This is frequently accomplished by simply writing a
command to a device I/O port. For such clocks, the AMX Configuration Builder lets you
create a fast clock ISP without having to write any code at all.

To create a fast clock ISP, go to the ISP Definition window, click on the Add button and
select Fast Clock Handler as the ISP Type. Then fill in the description of the operating
characteristics of your clock device. The layout of the window is shown below.

AMX CFire Target Guide KADAK 33

ISP Type

Your fast clock ISP is identified as such by selecting Fast Clock Handler from the pull
down list.

ISP Root

Edit the default name ---New--- to provide the name you wish to give to your fast clock
ISP root. The ISP root name is used to identify your fast clock ISP in the ISP list.

The ISP root is a function created by the AMX Configuration Builder in your Target
Configuration Module. The function entry point is declared with a public symbol defined
with the name you provide. The name must be unique and must conform to the symbol
naming conventions of your assembler.

Clock Service

Your clock device will be serviced as follows:

Write Value #1 to the device port at memory Address #1.
Delay for the number of µs defined as I/O Delay (µs).
Write Value #2 to the device port at memory Address #2.

Address and Value

Each address parameter specifies the 32-bit, hexadecimal value of an absolute memory
address which, when referenced as an n-bit value, is decoded by your target hardware as
a reference to your clock device. Each value parameter is an n-bit, hexadecimal value
which must be written to the device port specified by the associated address in order to
dismiss the clock interrupt.

If your clock device only requires that one value be written to one device port, leave
fields Address #2 and Value #2 blank (empty).

I/O Delay (µs)

Your target hardware may not operate correctly if two sequential device I/O references
are issued at the processor's instruction execution speeds. If this is the case, you can
force the fast clock ISP to inject a delay of n µs between the I/O device references by
entering a non-zero value into this field.

If your clock device requires no delay or only requires that one value be written to one
device port, leave the I/O Delay field blank (empty).

Write Size

From the pull down list, select the number of bits (8, 16 or 32) which must be written to
the clock device. The least significant n bits of each value will be written to the device.

34 KADAK AMX CFire Target Guide

4.5 Null Functions
Occasionally, while developing an AMX application, it can be very convenient to be able
to create software functions to satisfy your program link requirements without having to
create the final version of these functions. For example, if your AMX System
Configuration Module references a Restart Procedure and a task procedure which do not
yet exist, you will have to create them in order to successfully link your system.

Such functions are called null functions because they do nothing. Such functions can be
specified by you in the Null Function window whose layout is shown below.

To add a null function, click on the Add button. A new function named ---New--- will
appear at the bottom of the list of functions. Click on the name in the list and edit it to
meet your needs.

To edit the name of a null function, double click on its name in the list and edit it to meet
your needs.

To delete a null function, click on its name in the list and then click on the Delete button.

AMX CFire Target Guide KADAK 35

4.6 ROM Option Parameters
The AMX ROM Option allows the subset of AMX and its managers required by your
application to be linked together without any application code to form a separate AMX
ROM image. The resulting AMX ROM can be located anywhere in your memory
configuration. Your AMX application is then linked with a ROM Access Module which
provides access to AMX and its managers in the AMX ROM.

The AMX ROM Option Module defines the subset of AMX and its managers which you
wish to commit to the AMX ROM. This module is assembled and linked with the AMX
Library to create that ROM. The AMX ROM Option Link/Locate Specification File is
used to link and locate the ROM image as described in the toolset dependent chapter of
the AMX Tool Guide.

The AMX ROM Access Module provides your AMX application with access to the
AMX ROM. This module is assembled and linked with your AMX application.

To access the ROM Option window, use the AMX Configuration Builder to open your
Target Parameter File. From the selector list, pick the ROM Option Module selector
making it the active selector. The layout of the window is shown below.

36 KADAK AMX CFire Target Guide

Enable ROM Option

By default, the ROM Option feature is disabled. Check this box to enable the feature.
You can disable the feature by removing the check from the box.

ROM Address

You must define the absolute physical ROM address at which the AMX ROM image is to
be located. This address is dictated by you according to your hardware requirements.
Enter the address value as an unsigned 32-bit hexadecimal number. The ROM memory
address must be long aligned.

RAM Address

You must define the absolute physical RAM address of a block of 32 bytes reserved for
use by AMX. This address is dictated by you according to your hardware requirements.
Enter the address value as an unsigned 32-bit hexadecimal number. The RAM memory
address must be long aligned.

Resident Managers

Check the boxes which identify the AMX managers which you wish to commit to the
AMX ROM. If you do not want a particular manager to be in the ROM, leave the
corresponding box unchecked.

Warning!

If your AMX ROM was created without a particular
manager, then an AMX fatal exit will occur if your system
attempts to access that manager.

AMX CFire Target Guide KADAK 37

5. Clock Drivers

5.1 Clock Driver Operation
You must provide a clock driver as part of your AMX application so that AMX can
provide timing services. AMX clock drivers are provided with AMX for the timer chips
used on the boards with which AMX has been tested. These drivers are ready for use and
can be installed as described in Chapter 5.3.

An AMX clock driver consists of three parts: an initialization procedure, a clock Interrupt
Service Procedure (ISP) and an optional shutdown procedure.

Clock Startup

The clock initialization procedure must configure the real-time clock to operate at the
frequency defined in your AMX System Configuration Module. It can then install the
pointer to the clock ISP root into the AMX Vector Table and start the clock.

Care must be taken to ensure that clock interrupts do not occur until the clock is properly
configured and the pointer to the clock ISP root is present in the AMX Vector Table.

Your AMX application will not have any AMX timing services until your clock
initialization procedure, say clockinit, has been executed. The first opportunity for
clockinit to execute occurs when AMX begins to execute your Restart Procedures. It
is recommended that your clockinit procedure be inserted into your list of Restart
Procedures at the point at which you wish the clock to be enabled during the launch.

Although it is not recommended, there is nothing to prohibit you from deferring the
starting of your clock by having some application task call your clockinit procedure.

The clock drivers provided with AMX illustrate how to install and start several different
real-time clocks. You should be able to pattern your clock initialization procedure after
the chip support procedure chclockinit in one of the AMX clock driver source files
CHxxxxT.C.

38 KADAK AMX CFire Target Guide

Clock Interrupts

A real-time clock used with the ColdFire processor will interrupt either on one of the
interrupt autovectors or on a user defined vector. In either case, the processor will
automatically dispatch through its Vector Table to your clock ISP.

The clock ISP consists of an ISP root and an Interrupt Handler. The processor dispatches
to the ISP root in response to the clock interrupt request. The ISP root calls the clock
Interrupt Handler to dismiss the clock interrupt request. Your clock ISP must be defined
as a conforming ISP of type Clock Handler as described in Chapter 4.3.

In some cases you may be able to create a fast clock ISP which has an ISP root but no
Interrupt Handler. In this case, it is the ISP root which dismisses the clock interrupt
request. Such a clock ISP is defined to be a conforming ISP of type Fast Clock Handler as
described in Chapter 4.4.

In other cases you may be able to pick one of the prebuilt AMX clock ISPs which has an
ISP root but no Interrupt Handler. In this case, it is the ISP root which dismisses the
clock interrupt request. Such a clock ISP is selected from the list which is accessed via
the Prebuilt Clock ISPs... button.

It is the ISP root which informs AMX that a hardware clock tick has occurred. When you
define your clock ISP, your definition of the ISP as a Clock Handler (or Fast Clock Handler)
or your selection of a prebuilt clock ISP ensures that the ISP is recognized by AMX as
the source of its fundamental clock tick operating at the frequency and resolution defined
in your AMX System Configuration Module.

Clock Shutdown

The clock shutdown procedure stops the clock in preparation for an AMX shutdown
following a temporary launch of AMX. If AMX is launched for permanent execution,
there is no need for a clock shutdown procedure.

If you intend to launch AMX for temporary execution, insert your clock shutdown
procedure, say clockexit, into your list of Exit Procedures at the point at which you
wish the clock to be disabled during the shutdown. Usually that will require that
clockexit be the last Exit Procedure in the list because, once you stop your clock, AMX
timing services will no longer be available.

The clock drivers provided with AMX illustrate how to disable several different real-time
clocks. You should be able to pattern your clock shutdown procedure after the chip
support procedure chclockexit in one of the AMX clock driver source files CHxxxxT.C.

AMX CFire Target Guide KADAK 39

5.2 Custom Clock Driver
The easiest way to create a custom clock driver is by example. Assume that the
counter/timer which you intend to use for your AMX clock is characterized as follows:

The I/O base address of the clock is at 0xFFA00100.
The clock interrupt is generated using vector number 25.
The clock interrupt is dismissed by writing bit pattern 0x08 to the clock register at its
base address plus 4.

The Interrupt Handler for an assembly language conforming clock ISP for such a device
could be coded as follows:

.extern _clockih
_clockih:
;
; receives D1 = ISP root parameter = A(clock base)
;

MOVEA.L D1,A0 ; A0 = A(clock base)
ADDQ.L #4,A0
MOVE.B #08,(A0) ; Dismiss interrupt
RTS ; Return

Create a clock ISP root for the clock as described in Chapter 4.3. Use the following
parameters in your definition of the clock ISP.

ISP Type: Clock Handler
ISP Root: clockroot
Interrupt Handler: clockih
Handler Language: Assembly
Parameter Type: Value
Parameter: 0xFFA00100

Note that you could just as easily create a fast clock ISP root for this simple clock as
described in Chapter 4.4 avoiding the need to create the Interrupt Handler clockih. Use
the following parameters in your definition of the fast clock ISP.

ISP Type: Fast Clock Handler
ISP Root: clockroot
Address #1: 0xFFA00104
Value #1: 0x08
I/O Delay: leave blank
Address #2: leave blank
Value #2: leave blank
Write Size: 8-bit

40 KADAK AMX CFire Target Guide

The clock initialization procedure for this custom clock driver could be coded in C as
follows. Insert procedure clockinit into your list of Restart Procedures provided in
your System Configuration Module at the point at which you wish the clock to be
enabled during the launch.

void CJ_CCPP clockroot(void); /* External clock ISP root */

void CJ_CCPP clockinit(void)
{

/* Inhibit clock interrupts */
/* Configure clock for correct frequency */

/* Install pointer to clock ISP root into AMX Vector Table */
cjksivtwr(25, (CJ_ISPPROC)clockroot);

/* Start clock and enable clock interrupts */
}

AMX CFire Target Guide KADAK rev4 41

5.3 AMX Clock Drivers
AMX clock drivers are provided with AMX for the timer chips used on the boards with
which AMX has been tested. These drivers are ready for use as described in this chapter.
The clock drivers are delivered in chip support source files having names of the form
CHnnnnT.C where nnnn identifies the particular clock chip. The clock chip support
procedures are named chxxxxxxx.

5.3.1 MCF5206 GPT Clock Driver

The AMX clock driver for the Motorola MCF5206 General Purpose Timer (GPT) is
ready for use on the Cadre III M5206EC3 board. It is configured to use timer number 1
operating at 1 KHz (1 ms period). It interrupts at internal priority level 0 on interrupt
level 2 which maps to vector number 26. Source code for this AMX clock driver is
provided in file CH5206T.C.

You must compile clock source module CH5206T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5206 GPT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5206 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5206clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Cadre III M5206EC3 board, the pointer is installed into the
entry for interrupt vector number 26.

Clock driver module CH5206T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5206 GPT Clock Driver

If you wish to use a different MCF5206 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5206T.C
and recompile the module. Edit instructions are included in the file.

42 KADAK AMX CFire Target Guide

5.3.2 MCF5307 GPT Clock Driver

The AMX clock driver for the Motorola MCF5307 General Purpose Timer (GPT) is
ready for use on the Arnewsh SBC5307 board. It is configured to use timer number 1
operating at 1 KHz (1 ms period). It interrupts at internal priority level 0 on interrupt
level 2 which maps to vector number 26. Source code for this AMX clock driver is
provided in file CH5307T.C.

You must compile clock source module CH5307T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5307 GPT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5307 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5307clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Arnewsh SBC5307 board, the pointer is installed into the
entry for interrupt vector number 26.

Clock driver module CH5307T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5307 GPT Clock Driver

If you wish to use a different MCF5307 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5307T.C
and recompile the module. Edit instructions are included in the file.

AMX CFire Target Guide KADAK 43

5.3.3 MCF5272 GPT Clock Driver

The AMX clock driver for the Motorola MCF5272 General Purpose Timer (GPT) is
ready for use on the Motorola M5272C3 board. It is configured to use timer number 1
operating at 1 KHz (1 ms period). It interrupts at interrupt priority level 2 via vector
number 69 (base of 64 + 4 + timer number). Source code for this AMX clock driver is
provided in file CH5272T.C.

You must compile clock source module CH5272T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5272 GPT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5272 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5272clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Motorola M5272C3 board, the pointer is installed into the
entry for interrupt vector number 69.

Clock driver module CH5272T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5272 GPT Clock Driver

If you wish to use a different MCF5272 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5272T.C
and recompile the module. Edit instructions are included in the file.

44 rev5 KADAK AMX CFire Target Guide

5.3.4 MCF5249 GPT Clock Driver

The AMX clock driver for the Motorola MCF5249 General Purpose Timer (GPT) is
ready for use on the Motorola M5249C3 board. It is configured to use timer number 1
operating at 1 KHz (1 ms period). It interrupts at internal priority level 0 on interrupt
level 2 which maps to vector number 26. Source code for this AMX clock driver is
provided in file CH5249T.C.

You must compile clock source module CH5249T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5249 GPT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5249 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5249clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Motorola M5249C3 board, the pointer is installed into the
entry for interrupt vector number 26.

Clock driver module CH5249T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5249 GPT Clock Driver

If you wish to use a different MCF5249 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5249T.C
and recompile the module. Edit instructions are included in the file.

AMX CFire Target Guide KADAK rev5 45

5.3.5 MCF5407 GPT Clock Driver

The AMX clock driver for the Motorola MCF5407 General Purpose Timer (GPT) is
ready for use on the Motorola M5407C3 board. It is configured to use timer number 1
operating at 1 KHz (1 ms period). It interrupts at internal priority level 0 on interrupt
level 2 which maps to vector number 26. Source code for this AMX clock driver is
provided in file CH5407T.C.

You must compile clock source module CH5407T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5407 GPT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5407 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5407clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Motorola M5407C3 board, the pointer is installed into the
entry for interrupt vector number 26.

Clock driver module CH5407T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5407 GPT Clock Driver

If you wish to use a different MCF5407 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5407T.C
and recompile the module. Edit instructions are included in the file.

46 rev7 KADAK AMX CFire Target Guide

5.3.6 MCF5282 PIT Clock Driver

The AMX clock driver for the Motorola MCF5282 Programmable Interrupt Timer (PIT)
is ready for use on the Motorola M5282EVB board. It is configured to use timer number
1 operating at 1 KHz (1 ms period). It interrupts at interrupt priority level 2 via vector
number 119 (base of 118 + timer number). Source code for this AMX clock driver is
provided in file CH5282T.C.

You must compile clock source module CH5282T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5282 PIT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5282 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5282clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Motorola M5282EVB board, the pointer is installed into the
entry for interrupt vector number 119.

Clock driver module CH5282T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5282 PIT Clock Driver

If you wish to use a different MCF5282 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5282T.C
and recompile the module. Edit instructions are included in the file.

AMX CFire Target Guide KADAK rev8 47

5.3.7 MCF5475 GPT Clock Driver

The AMX clock driver for the Motorola MCF5475 General Purpose Timer (GPT) is
ready for use on the Motorola M5475EVB board. It is configured to use timer number 0
operating at 1 KHz (1 ms period). It interrupts at internal priority level 7 on interrupt
level 2 via vector number 126 (base of 126 - timer number). Source code for this AMX
clock driver is provided in file CH5475T.C.

You must compile clock source module CH5475T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5475 GPT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5475 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5475clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Motorola M5475EVB board, the pointer is installed into the
entry for interrupt vector number 126.

Clock driver module CH5475T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5475 GPT Clock Driver

If you wish to use a different MCF5475 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5475T.C
and recompile the module. Edit instructions are included in the file.

48 rev8 KADAK AMX CFire Target Guide

5.3.8 MCF5271 PIT Clock Driver

The AMX clock driver for the Motorola MCF5271 Programmable Interrupt Timer (PIT)
is ready for use on the Motorola M5271EVB board. It is configured to use timer number
0 operating at 1 KHz (1 ms period). It interrupts at internal priority level 7 on interrupt
priority level 2 via vector number 100 (base of 100 + timer number). Source code for
this AMX clock driver is provided in file CH5271T.C.

You must compile clock source module CH5271T.C and link the resulting object module
with the rest of your AMX application.

To use the AMX MCF5271 PIT clock driver, you must create a clock ISP root as
described in Chapter 4.3. Simply check the box next to the MCF5271 clock ISP on the
list provided via the Prebuilt Clock ISPs... button.

Your Target Configuration Module will include a clock ISP root named _ch5271clk.
The clock driver's initialization procedure will install the pointer to this clock ISP into the
AMX Vector Table. On the Motorola M5271EVB board, the pointer is installed into the
entry for interrupt vector number 100.

Clock driver module CH5271T.C includes the clock initialization procedure chclockinit
and the clock shutdown procedure chclockexit. Insert procedure chclockinit into the
list of Restart Procedures provided in your System Configuration Module at the point at
which you wish the clock to be enabled during the launch. If you intend to launch AMX
for temporary execution, insert chclockexit into the list of Exit Procedures at the point
at which you wish the clock to be disabled during the shutdown.

Porting the MCF5271 PIT Clock Driver

If you wish to use a different MCF5271 timer channel, change the timer frequency or use
a different AMX vector number, you must edit the definitions in source file CH5271T.C
and recompile the module. Edit instructions are included in the file.

AMX CFire Target Guide KADAK A-1

Appendix A. Target Parameter File Specification

A.1 Target Parameter File Structure
The Target Parameter File is a text file structured as illustrated in Figure A.1-1. This file
can be created and edited by the AMX Configuration Manager, a Windows® utility
provided with AMX.

; AMX Target Parameter File
:
...LAUNCH PERM,VNA
...HDW PROC,VMASK,VBR,EVTROM,CACHE,CACR
...VBASE VTABLE
...DELAY CPUFREQ
;
; Null Functions (optional; one line for each null function)
...NULLFN FNNAME
;
; Conforming ISP definitions (one line for each ISP)
...ISPA ISPROOT,HANDLER,VNUM,PARAM,PARTYPE
...ISPC ISPROOT,HANDLER,VNUM,PARAM,PARTYPE
;
; Conforming fast clock ISP (no user code required)
...CLKFAST CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM
...CLKFAST16 CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM
...CLKFAST32 CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM
; or Motorola ColdFire GPT prebuilt clock ISP
...CLKCFIRE CORE
; or conforming clock ISP (coded in assembly language)
...CLKA CLKROOT,CLKHAND,VNUM,PARAM,PARTYPE
; or conforming clock ISP (coded in C)
...CLKC CLKROOT,CLKHAND,VNUM,PARAM,PARTYPE
;
; AMX ROM Option (optional)
...ROMOPT ROMADR,RAMADR
...ROMSM ;Semaphore Manager
...ROMEM ;Event Manager
...ROMMB ;Mailbox Manager
...ROMMX ;Message Exchange Manager
...ROMBM ;Buffer Manager
...ROMMM ;Memory Manager
...ROMCL ;Circular List Manager
...ROMLL ;Linked List Manager
...ROMTD ;Time/Date Manager

Figure A.1-1 AMX Target Parameter File

A-2 KADAK AMX CFire Target Guide

The Target Parameter File consists of a sequence of directives consisting of a keyword of
the form ...XXX beginning in column one which is usually followed by a parameter list.
Some directives require only a keyword with no parameters. Any line in the file which
does not begin with a valid keyword is considered a comment and is ignored.

It is the purpose of this appendix to specify all AMX CFire directives by defining their
keywords and the parameters, if any, which they require.

The example in Figure A.1-1 uses symbolic names for all of the parameters following
each of the keywords. The symbol names in the Target Parameter File are replaced by
the actual parameters needed in your system.

The order of keywords in the Target Parameter File is not critical. The order of the
keywords in Figure A.1-1 may not match their order in the sample Target Parameter File
provided with AMX.

It is expected that you will use the AMX Configuration Manager to create and edit your
Target Parameter File. The Configuration Manager creates the directives using the
parameters which you provide. Since these parameters are well described in Chapter 4,
the parameter definitions presented in this appendix will be limited to the detail needed to
form a working specification.

If you are unable to use AMX Configuration Manager utility, you should refer to the
porting directions provided in Appendix A.3.

AMX CFire Target Guide KADAK rev8 A-3

A.2 Target Parameter File Directives
The AMX Launch Parameters are defined as follows.

...LAUNCH PERM,VNA

PERM 0 if the AMX launch is temporary
1 if the AMX launch is permanent

VNA 0 if the AMX Vector Table entries are to be alterable
1 if the AMX Vector Table entries are NOT to be alterable

You must set VNA to 0 to allow AMX or your application to dynamically install exception
handlers into the AMX Vector Table at run time. If you set VNA to 0, you must also set
EVTROM to 0 in the ...HDW keyword entry. If you set VNA to 1, you must initialize the
AMX Vector Table entries for AMX use as described in Chapter 3.6.

The Target Parameter File includes a set of hardware definitions.

...HDW PROC,VMASK,VBR,EVTROM,CACHE,CACR

PROC Processor identifier
VMASK = 0xMMMMMMMM = AMX exception vector mask
VBR = 0xxxxxxxxx = A(Exception Vector Table) for VBR

= -1 if VBR is read only
EVTROM 0 if the AMX Vector Table is to be in RAM

1 if the AMX Vector Table is to be in ROM
CACHE 0 if cache is to be ignored by AMX at launch

1 if cache is to be enabled by AMX at launch
CACR Default Cache Control Register value or 0

The PROC parameter is a string used to identify the processor architecture. PROC must be
one of:

5202, 5203, 5204, 5206, 5206E, 5216, 5235, 5249,
5271, 5272, 5275, 5280, 5282,
5307, 5407, 5475, 5485

Set bit N of the VMASK Exception Vector Mask for each of the exceptions which are to be
serviced by AMX. For example, set this parameter to 0x0000DF1E to allow AMX to
handle all exceptions. Bits in the mask are defined in Figure 3.2-1. When you are using
AMX with a debugger, do not set any of the mask bits for exceptions which the debugger
services. For example, a mask of 0x0000410C is commonly used with many debuggers.

The CACHE parameter can be used to instruct AMX to enable the ColdFire instruction and
data caches when AMX is launched. If the processor or architecture selected with
parameter PROC has no cache control, set parameter CACHE to 0.

Since the Cache Control Register (CACR) can be written but not read, AMX cannot alter
the CACR content to manipulate the caches without affecting other control bits in the
register. You must provide the CACR value which defines the actual content of the
CACR register at the time your application launches AMX. If the processor selected
with parameter PROC has no cache control, set parameter CACR to 0.

A-4 KADAK AMX CFire Target Guide

Vector Base Register

The VBR parameter is used to specify the memory address at which the Exception Vector
Table is located. For most applications, the Exception Vector Table is located at address
0. You can use the VBR parameter to redefine the location of the Exception Vector Table
or to define its location in ROM.

At launch, AMX installs the address specified by parameter VBR into the processor's
Vector Base Register (VBR), if one exists for the processor specified by parameter PROC.
If parameter VBR is set to -1, AMX will leave the VBR unaltered and will read its content
at launch time to determine the address of the Exception Vector Table.

If you are using a processor that does not have a VBR, set parameter VBR to 0. AMX will
assume that the Exception Vector Table is at address 0 as is appropriate for such
processors.

For some processors, the VBR cannot be read. As long as the Exception Vector Table is
at address 0, you can set parameter VBR to -1 and AMX will operate as just described.
However, if the Exception Vector Table is at some other location, you must set parameter
VBR to 0 and insert the following ...VBASE directive in the Target Parameter File.

...VBASE 0xFFC00000

AMX will assume that the Exception Vector Table is at address 0xFFC00000. Replace
the value 0xFFC00000 with the address of your Exception Vector Table. If the processor
has a Vector Base Register, AMX will ignore its content and leave it unaltered.

Shadow Vector Table Location

In some cases, your Exception Vector Table may be in ROM with support for a shadow
vector table in RAM. For example, assume that you use an MCF5xxx with ROM located
at address 0. The processor does not have a Vector Base Register; it assumes that the
Exception Vector Table is located at address 0. Now, assume that the ROM at address 0
includes a monitor which intercepts all interrupts and exceptions and dispatches each
according to entries in a shadow vector table located at address 0xF00000.

To use AMX in this example, the ...HDW parameter VBR must be set to 0 and the
following directive must be present in the Target Parameter File.

...VBASE 0xF00000

AMX will assume that the Exception Vector Table is at address 0xF00000. If the
processor has a Vector Base Register, AMX will ignore its content and leave it unaltered.

AMX CFire Target Guide KADAK A-5

Device I/O Delay

The Target Parameter File includes a device I/O delay definition.

...DELAY CPUFREQ

CPUFREQ ColdFire processor instruction execution frequency (MHz)

The ...DELAY directive allows you to condition the delay loop of the AMX device I/O
delay procedure cjcfhwdelay to match your hardware requirements. This directive
allows AMX to use your estimate of the processor's instruction execution frequency
defined by parameter CPUFREQ to derive the loop count needed to provide a one
microsecond delay.

Null Function Declarations

To create a null function, a function that does nothing, include the following directive in
your Target Parameter File.

...NULLFN FNNAME

FNNAME Name given to the null function

For every ...NULLFN directive, your Target Configuration Module will include a public
assembly language function with name given by your parameter FNNAME. The function
will do nothing but return to the caller.

A-6 KADAK AMX CFire Target Guide

Conforming ISP Declarations

The Target Parameter File must include a definition of an ISP root for each conforming
Interrupt Service Procedure (ISP) which you intend to use in your application. The ISP
root definition is provided using one of the following directives. The ISP root is declared
using ...ISPC if its Interrupt Handler is coded in C or ...ISPA if its Interrupt Handler is
coded in assembly language.

...ISPC ISPROOT,HANDLER,VNUM,PARAM,PARTYPE

...ISPA ISPROOT,HANDLER,VNUM,PARAM,PARTYPE

ISPROOT Name of the ISP root entry point
HANDLER Name of the public device Interrupt Handler
VNUM Interrupt vector number assigned to the device
PARAM Interrupt Handler parameter
PARTYPE Parameter PARAM type

If your Interrupt Handler does not require a parameter, leave field PARAM blank (empty)
and set PARTYPE to 0.

If your Interrupt Handler requires a numeric parameter, set PARAM to the 32-bit signed or
unsigned value and set PARTYPE to 0. The numeric value must be expressed in a form
acceptable to your assembler.

If your Interrupt Handler requires a pointer to a public variable as a parameter, let PARAM
be the name of that variable and set PARTYPE to 1.

VNUM defines the interrupt vector number which you have assigned to the device. VNUM is
25 to 31 or 64 to 255. Note that all other vector numbers in the range 0 to 255 are
reserved by Motorola.

If VNUM is 0 to 255, AMX will automatically install the pointer to the ISP root ISPROOT
into vector number VNUM in the AMX Vector Table when AMX is launched. The pointer
will be installed by AMX before any application Restart Procedures execute.
Consequently, you must ensure that interrupts from the device are not possible at the time
AMX is launched.

If VNUM is -1, you must provide a Restart Procedure or task which installs the pointer to
the ISP root ISPROOT into the AMX Vector Table using AMX procedure cjksivtwr or
cjksivtx.

Note

Parameter VNUM cannot be adjusted using the AMX
Configuration Builder. This parameter is provided for
compatibility with other AMX implementations.

AMX CFire Target Guide KADAK rev7 A-7

AMX Clock Handler Declaration

The Target Parameter File must include a definition of an ISP root for your AMX clock
handler. The clock ISP root definition must be provided using one of the following
directives. If possible, select one of the prebuilt clock ISP roots. Otherwise, the clock
ISP root must be declared using ...CLKC if its Interrupt Handler is coded in C or
...CLKA if its Interrupt Handler is coded in assembly language. The clock ISP root can
be declared using ...CLKFAST if an Interrupt Handler is not required to service the clock.

...CLKCFIRE CORE {Prebuilt Motorola ColdFire Clock ISP}

...CLKC CLKROOT,CLKHAND,VNUM,PARAM,PARTYPE

...CLKA CLKROOT,CLKHAND,VNUM,PARAM,PARTYPE

...CLKFAST CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM

...CLKFAST16 CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM

...CLKFAST32 CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM

CLKROOT Name of the clock ISP root entry point
CLKHAND Name of the public clock device Interrupt Handler
VNUM Interrupt vector number assigned to the clock device
PARAM Interrupt Handler parameter
PARTYPE Parameter PARAM type

If you use the prebuilt AMX Clock ISP for the ColdFire General Purpose Timer (GPT) or
Programmable Interrupt Timer (PIT), parameter CORE must specify the processor core
type. GPT clock drivers are available for the 5206, 5249, 5272, 5307 and 5407 cores.
A PIT clock driver is available for the 5280 and 5282 cores. The processor specified by
parameter PROC in the ...HDW directive must have the ColdFire core specified by
parameter CORE.

If your clock Interrupt Handler does not require a parameter, leave field PARAM blank
(empty) and set PARTYPE to 0.

If your clock Interrupt Handler requires a numeric parameter, set PARAM to the 32-bit
signed or unsigned value and set PARTYPE to 0. The numeric value must be expressed in
a form acceptable to your assembler.

If your clock Interrupt Handler requires a pointer to a public variable as a parameter, let
PARAM be the name of that variable and set PARTYPE to 1.

The definition of parameter VNUM is exactly the same as that described for conforming
ISPs declared using the ...ISPC or ...ISPA directives. However, unless warranted by
exceptional circumstances, parameter VNUM should always be set to -1 in the declaration
of your clock ISP root. It is the responsibility of your clock initialization procedure to
install the pointer to the ISP root ISPROOT into the AMX Vector Table.

Note

Parameter VNUM cannot be adjusted using the AMX
Configuration Builder. This parameter is provided for
compatibility with other AMX implementations.

A-8 KADAK AMX CFire Target Guide

If your clock can be serviced by writing one or two n-bit values to a device I/O port, you
can use the ...CLKFAST directive to create a very fast clock ISP root with no application
code required. The general form of the ...CLKFAST directive is as follows.

...CLKFAST CLKROOT,CLKADR,CLKCMD,CLKADR2,CLKCMD2,IODELAY,VNUM

CLKROOT Name of the clock ISP root entry point
CLKADR 32-bit numeric device memory address
CLKCMD 8-bit numeric command
CLKADR2 32-bit numeric secondary device memory address
CLKCMD2 8-bit numeric secondary command
IODELAY Delay (µs) required between I/O commands
VNUM Interrupt vector number assigned to the clock device

The numeric parameters must be expressed in a form acceptable to your assembler.
Parameters CLKADR2, CLKCMD2, IODELAY and VNUM can be omitted if they are not required.
If a parameter is omitted, its field must be left blank (empty) and the comma to the left of
the field must be retained. If the resulting ...CLKFAST directive ends with a string of
commas because the intervening parameters have all been omitted, it is acceptable to
delete the trailing commas.

The clock ISP root will dismiss the clock interrupt by writing the 8-bit value CLKCMD to
the 32-bit device memory address CLKADR. If parameter CLKADR2 is present in the
...CLKFAST directive, the clock ISP root will then write the 8-bit value to the 32-bit
device memory address CLKADR2. If parameter CLKADR2 is present, parameter CLKCMD2
must also be present. If this second device I/O command is not required, leave both
CLKCMD2 and CLKADR2 blank (empty).

If two I/O commands are provided, parameter IODELAY can be used to define the delay, if
any, required after the first command before the second command can be issued. The
delay is provided by a call to AMX procedure cjcfhwdelay (see directive ...DELAY).

If there is no need for a delay or a second command is not required, leave the IODELAY
field blank (empty).

Parameter VNUM has been described on the preceding page. If parameter VNUM is omitted,
then a value of -1 is assumed for VNUM.

Use the ...CLKFAST16 directive if 16-bit values must be written to the clock.
Use the ...CLKFAST32 directive if 32-bit values must be written to the clock.

AMX CFire Target Guide KADAK A-9

AMX ROM Option

To use the AMX ROM option, the Target Parameter File must include the following
directives.

...ROMOPT ROMADR,RAMADR

...ROMSM ;Semaphore Manager

...ROMEM ;Event Manager

...ROMMB ;Mailbox Manager

...ROMMX ;Message Exchange Manager

...ROMBM ;Buffer Manager

...ROMMM ;Memory Manager

...ROMCL ;Circular List Manager

...ROMLL ;Linked List Manager

...ROMTD ;Time/Date Manager

Parameter ROMADR is the absolute physical ROM address at which the AMX ROM image
is to be located.

Parameter RAMADR is the absolute physical RAM address of a block of 32 bytes reserved
for use by AMX.

Both ROMADR and RAMADR must specify memory addresses which are long aligned.

Parameters ROMADR and RAMADR must be expressed as undecorated hexadecimal numbers.
An undecorated hexadecimal number is a hexadecimal number expressed without the
leading or trailing symbols used by programming languages to identify such numbers.

Language Hexadecimal Undecorated
C 0xABCDEF01 ABCDEF01
Assembler (Intel) 0ABCDEF01H ABCDEF01
Assembler (Motorola) $ABCDEF01 ABCDEF01

Keywords ...ROMxx are used to identify the AMX managers which you wish to commit
to the AMX ROM. If you do not want a particular manager to be in the ROM, omit the
corresponding keyword statement from the Target Parameter File or insert the comment
character ; in front of the keyword.

A-10 KADAK AMX CFire Target Guide

This page left blank intentionally.

AMX CFire Target Guide KADAK A-11

A.3 Porting the Target Parameter File
It is expected that you will use the AMX Configuration Manager to create and edit your
Target Parameter File. If you are unable to use the AMX Configuration Manager utility,
you will have to create and edit your Target Parameter File using a text editor.

You should begin by choosing one of the sample Target Parameter Files provided with
AMX. Choose the Target Parameter File for the Sample Program which operates on the
evaluation board which most closely matches your target hardware. Edit the parameters
in all directives to meet your requirements. Follow the specifications provided in
Appendix A.2 and adhere to the detailed parameter definitions given in the presentation
of the AMX Configuration Manager screens in Chapter 4.

The AMX Configuration Manager includes its own copy of the AMX Configuration
Generator which it uses to produce your Target Configuration Module from the Target
Configuration Template File and the directives in your Target Parameter File. If you are
unable to use the Configuration Manager, you will have to use the stand alone version of
the AMX Configuration Generator.

The command line required to run the Configuration Generator and use it to produce a
Target Configuration Module HDWCFG.ASM from the AMX CFire Target Configuration
Template File CJ512HDW.CT and a Target Parameter File called HDWCFG.UP is as follows:

CJ512CG HDWCFG.UP CJ512HDW.CT HDWCFG.ASM

If you are not doing your development on a PC or compatible, you may still be able to
port the Configuration Generator to your development system as described in
Appendix C of the AMX User's Guide.

A-12 KADAK AMX CFire Target Guide

This page left blank intentionally.

AMX CFire Target Guide KADAK rev3 B-1

Appendix B. AMX CFire Service Procedures

B.1 Summary of Services
AMX CFire provides a collection of target dependent AMX service procedures for use
with the ColdFire processor and compatibles and the C compilers which support them.
These procedures are summarized below.

Interrupt Control (class ksi)

cjksivtp Fetch pointer to the AMX Vector Table
cjksivtrd Read an entry from the AMX Vector Table
cjksivtwr Write an entry into the AMX Vector Table
cjksivtx Exchange an entry in the AMX Vector Table

Processor and C Interface Procedures (class cf)

In addition to the services provided by AMX and its managers, the AMX Library
includes several C procedures of a general nature which simplify application
programming in real-time systems on your target processor.

cjcfccsetup Setup C environment
cjcfdi Disable interrupts at priority level 6
cjcfei Enable interrupts at priority level 0
cjcfflagrd Read the processor status register (SR)
cjcfflagwr Write to the processor status register (SR)
cjcfhwdelay Delay n microseconds
cjcfhwbcache Flush and enable/disable data and instruction caches
cjcfhwdcache Flush and enable/disable data cache
cjcfhwicache Flush and enable/disable instruction cache
cjcfin8 Read an 8-bit input port
cjcfin16 Read a 16-bit input port
cjcfin32 Read a 32-bit input port
cjcfjlong Long jump to a mark set by cjcfjset
cjcfjset Set a mark for a subsequent long jump by cjcfjlong
cjcfmcopy Copy a block of memory
cjcfmset Set (fill) a block of memory
cjcfout8 Write an 8-bit value to an output port
cjcfout16 Write a 16-bit value to an output port
cjcfout32 Write a 32-bit value to an output port
cjcfstkjmp Switch stacks and jump to a new procedure
cjcftag Convert a string to an AMX tag value
cjcfvol8 Read a volatile 8-bit variable
cjcfvol16 Read a volatile 16-bit variable
cjcfvol32 Read a volatile 32-bit variable
cjcfvolpntr Read a volatile pointer variable

B-2 KADAK AMX CFire Target Guide

The AMX Library also includes several C procedures which are used privately by
KADAK. These procedures, although available for your use, are not documented in this
manual and are subject to change at any time. The procedures are briefly described in
source file CJZZZUB.S. Prototypes will be found in file CJZZZIF.H. The register array
structure cjxregs which they use is defined in file CJZZZKT.H.

cjcfregld Load ColdFire registers from a register array
cjcfregst Store ColdFire registers into a register array
cjcfsint Generate a software interrupt

AMX CFire Target Guide KADAK rev3 B-3

B.2 Service Procedures
A description of all processor dependent AMX CFire service procedures is provided in
this appendix. The descriptions are ordered alphabetically for easy reference.

Italics are used to distinguish programming examples. Procedure names and variable
names which appear in narrative text are also displayed in italics. Occasionally a lower
case procedure name or variable name may appear capitalized if it occurs as the first
word in a sentence.

Vertical ellipses are used in program examples to indicate that a portion of the program
code is missing. Most frequently this will occur in examples where fragments of
application dependent code are missing.

:
: /* Dismiss device interrupt */
:

Capitals are used for all defined AMX filenames, constants and error codes. All AMX
procedure, structure and constant names can be readily identified according to the
nomenclature introduced in Chapter 1.3 of the AMX User's Guide.

A consistent style has been adopted for each description. The procedure name is
presented at the extreme top right and left as in a dictionary. This method of presentation
has been chosen to make it easy to find procedures since they are ordered alphabetically.

Purpose A one-line statement of purpose is always provided.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

This block is used to indicate which of your AMX application procedures
can call the AMX procedure. The term ISP refers to the Interrupt Handler
of a conforming ISP. A filled in box indicates that the procedure is
allowed to call the AMX procedure. In the above example, only tasks and
Restart Procedures would be allowed to call the procedure.

Setup The prototype of the AMX procedure is shown.
The AMX header file in which the prototype is located is identified.
Include AMX header file CJZZZ.H for compilation.

File CJZZZ.H is a generic AMX include file which automatically includes
the correct subset of the AMX header files for a particular target
processor. If you include CJZZZ.H instead of its KADAK part numbered
counterpart (CJnnn.H), your AMX application source modules will be
readily portable to other processors without editing.

Description Defines all input parameters to the procedure and expands upon the
purpose or method if required.

B-4 rev3 KADAK AMX CFire Target Guide

Interrupts AMX procedures frequently must deal with the processor interrupt mask.
The effect of each AMX procedure on the interrupt state is defined
according to the following legend.

� Disabled � Enabled � Restored
(Not in ISP)

D E R Effect on Interrupts
� � � Untouched
� � � Disabled and left disabled upon return
� � � Enabled and left enabled upon return
� � � Disabled and then enabled upon return
� � � Disabled and then, prior to return, restored to the state in

effect upon entry to the procedure
� � � Disabled, possibly briefly enabled and then, prior to return,

restored to the state in effect upon entry to the procedure

The warning (Not in ISP) will be present as a reminder that when the Interrupt
Handler of a conforming ISP calls the AMX procedure, interrupts will
NOT be explicitly enabled by the AMX procedure. If interrupts are
enabled when an Interrupt Handler calls the AMX procedure, they will be
enabled upon return.

Returns The outputs, if any, produced by the procedure are always defined.

Most AMX procedures return an integer error status identified as a
CJ_ERRST. Note that CJ_ERRST is not a C data type. CJ_ERRST is defined
(using #define) to be an int allowing error codes to be easily handled as
integers but readily identified as AMX error codes.

Restrictions If any restrictions on the use of the procedure exist, they are described.

Note Special notes, suggestions or warnings are offered where necessary.

Task Switch Task switching effects, if any, are described.

Example An example is provided for each of the more complex AMX procedures.
The examples are kept simple and are intended only to illustrate the
correct calling sequence.

See Also A cross reference to other related AMX procedures is always provided if
applicable.

AMX CFire Target Guide KADAK B-5

cjcfccsetup cjcfccsetup

Purpose Setup C Environment

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfccsetup(void);

Description Use cjcfccsetup to setup all low level processor registers to meet the
requirements of a particular C compiler. For example, the C compiler may
assume that some data variables can be accessed using a particular register
which always points to the data. However, when mixing languages, you
may find that when a C procedure is called from assembly language, the
register assumptions are not valid. A call to cjcfccsetup on entry to the
C procedure will setup the correct register content.

Interrupts � Disabled � Enabled � Restored

Returns The registers, if any, which are required by C are set to the values which
they contained when AMX was launched.

Restrictions Use cjcfccsetup with care. You may inadvertently cause a register to be
set which violates the register preservation rules of the other language.

B-6 KADAK AMX CFire Target Guide

cjcfdi cjcfdi
cjcfei cjcfei

Purpose Disable or Enable Interrupts

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure
(cjcfdi only)

Setup Prototype in file CJZZZTF.H or macro in file CJZZZCC.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfdi(void);
void CJ_CCPP cjcfei(void);

Description Tasks can use cjcfdi to briefly disable all sources of interrupt.
Immediately thereafter the task can use cjcfei to enable all sources of
interrupt again.

Interrupts � Disabled by cjcfdi � Enabled by cjcfei

Returns Nothing

The interrupt priority in the status register (SR) is set to 6 to disable
interrupts or reset to 0 to enable interrupts.

Restrictions ISPs must not use cjcfei. If nested interrupts are supported in your
application, ISPs must always use cjcfflagwr to restore interrupts to the
state determined by an earlier call to cjcfflagrd.

Interrupts should be enabled within a short time after they are disabled or
system performance will be degraded.

See Also cjcfflagrd, cjcfflagwr

AMX CFire Target Guide KADAK B-7

cjcfflagrd cjcfflagrd
cjcfflagwr cjcfflagwr

Purpose Read or Write Processor Status Register

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype in file CJZZZTF.H or macro in file CJZZZCC.H.
#include "CJZZZ.H"
CJ_TYFLAGS CJ_CCPP cjcfflagrd(void);
void CJ_CCPP cjcfflagwr(CJ_TYFLAGS flags);

Description Cjcfflagrd returns the actual state of the processor status register (SR).

Cjcfflagwr updates the processor status register (SR) by writing the
parameter flags to the register.

Use cjcfflagrd to read the state of the processor status register, thereby
capturing the current interrupt state. Then use cjcfdi to briefly disable
all sources of interrupt. Immediately thereafter, use cjcfflagwr to restore
the state of the interrupt system.

Interrupts � Untouched by cjcfflagrd � Restored by cjcfflagwr

Returns Cjcfflagrd returns the actual state of the processor status register.
Cjcfflagwr returns nothing.

Cjcfflagwr unconditionally copies flags into the processor status
register, thereby enabling or disabling interrupts. Since no validation of
flags is performed, caution in the use of cjcfflagwr is advised.

See Also cjcfdi, cjcfei

B-8 KADAK AMX CFire Target Guide

cjcfhwdelay cjcfhwdelay

Purpose Delay n Microseconds

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfhwdelay(int n);

Description n is the delay interval measured in microseconds.

Use cjcfhwdelay to generate a software delay loop of approximately n
microseconds. This procedure is intended for use in device drivers which
must introduce device access delays to avoid violating the minimum
timing delay needed between sequential references to a device I/O port.

The ...DELAY directive in your Target Parameter File is used by AMX to
derive the delay loop count needed to produce an n microsecond delay.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Note This procedure can be used at any time, even prior to launching AMX or
after exiting from AMX.

If the ...DELAY directive in your Target Parameter File indicates that the
processor frequency is 0, then you must install the frequency value into
the public long variable cjcfhwdelayf prior to launching AMX. If you
call procedure cjcfhwdelay() prior to launching AMX, be sure that
variable cjcfhwdelayf is initialized before making the call.

AMX CFire Target Guide KADAK B-9

cjcfhwbcache cjcfhwbcache
cjcfhwdcache cjcfhwdcache
cjcfhwicache cjcfhwicache
Purpose Flush and Enable/Disable Caches

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype in file CJZZZIF.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfhwbcache(int operation);
void CJ_CCPP cjcfhwdcache(int operation);
void CJ_CCPP cjcfhwicache(int operation);

Description operation = 0 to force the caches to be flushed and disabled.

operation = 1 to force the caches to be flushed and enabled.

Interrupts � Disabled � Enabled � Restored

Returns Nothing
Cjcfhwbcache flushes and disables (or enables) both the data and
instruction caches.

Cjcfhwdcache flushes and disables (or enables) only the data cache.

Cjcfhwicache flushes and disables (or enables) only the instruction
cache.

Note These procedures can be called even if your Target Parameter File
indicates that you are targeting a ColdFire processor with no cache or only
one kind of cache. In such cases, the procedures only affect the caches
which exist.

Restrictions ISPs and Timer Procedures must not use these procedures. Since
interrupts are disabled while the caches are flushed, use caution when
calling these procedures or system performance will be degraded,
especially if the cache sizes are large.

B-10 KADAK AMX CFire Target Guide

cjcfin8 cjcfin8
cjcfin16 cjcfin16
cjcfin32 cjcfin32
Purpose Read an 8, 16 or 32-Bit Input Port

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype in file CJZZZTF.H or macro in file CJZZZCC.H.
#include "CJZZZ.H"
CJ_T8 CJ_CCPP cjcfin8(void *port);
CJ_T16 CJ_CCPP cjcfin16(void *port);
CJ_T32 CJ_CCPP cjcfin32(void *port);

Description port is the address of an 8, 16 or 32-bit memory-mapped device input
port.

Interrupts � Disabled � Enabled � Restored

Returns Cjcfin8 returns an 8-bit signed value.
Cjcfin16 returns a 16-bit signed value.
Cjcfin32 returns a 32-bit signed value.

Example #include "CJZZZ.H"

/* Console status register */
#define CONSTAT ((CJ_T8 *)0xFFFA002DL)

/* Console data register */
#define CONDATA ((CJ_T8 *)0xFFFA002FL)

void CJ_CCPP conout(char ch) {

/* Wait for ready */
while ((cjcfin8(CONSTAT) & 0x80) == 0)

;

/* Write character */
cjcfout8(CONDATA, (CJ_T32)ch);
}

See Also cjcfout8, cjcfout16, cjcfout32

AMX CFire Target Guide KADAK B-11

cjcfjlong cjcfjlong
cjcfjset cjcfjset

Purpose cjcfjset Sets a Mark for a Long Jump
cjcfjlong Long Jumps to that Mark

These procedures are provided for AMX portability. They are not
replacements for C library procedures longjmp or setjmp although they
function in a similar manner.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZTF.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfjlong(struct cjxjbuf *jbuf, int value);
int CJ_CCPP cjcfjset(struct cjxjbuf *jbuf);

Description jbuf is a pointer to a jump buffer to be used to mark the processor state at
the time cjcfjset is called and to restore that state when cjcfjlong is
subsequently called.

The processor dependent structure cjxjbuf is defined in file
CJZZZCC.H.

value is an integer value to be returned to the cjcfjset caller when
cjcfjlong initiates the long jump return. Value cannot be 0. If value
= 0, cjcfjlong will replace it with value = 1.

Interrupts � Disabled � Enabled � Restored

Returns Cjcfjset returns 0 when initially called to establish the mark. Cjcfjset
returns value (non 0) when cjcfjlong is called to do the long jump to the
mark established by the initial cjcfjset call.

There is no return from cjcfjlong.

Restrictions Cjcfjset must be called prior to any call to cjcfjlong. Each call must
reference the same jump buffer. The jump buffer must remain unaltered
between the initial cjcfjset call and the subsequent cjcfjlong long
jump return.

Under no circumstances should one task attempt a long jump using a jump
buffer set by another task.

B-12 KADAK AMX CFire Target Guide

Example #include "CJZZZ.H"

void CJ_CCPP dowork(struct cjxjbuf *jbp);

static struct cjxjbuf jumpbuffer;

#define STACKSIZE 512 /* Stack size (longs) */
#define STACKDIR 1 /* 0=grows up; 1=grows down */
static long newstack[STACKSIZE];

#if (STACKDIR == 1)
#define STACKP (&newstack[STACKSIZE - 1])
#else
#define STACKP newstack
#endif

void CJ_CCPP taskbody(void) {

if (cjcfjset(&jumpbuffer) == 0)

/* Switch to new stack and do work */
cjcfstkjmp(&jumpbuffer, STACKP,

(CJ_VPPROC)dowork);
/* Never returns to here */

/* Do work using original stack */
dowork(NULL);
}

void CJ_CCPP dowork(struct cjxjbuf *jbp) {

/* Do work */

/* If jump buffer provided, then use long jump to */
/* restore the original stack and return */
if (jbp != NULL)

cjcfjlong(jbp, 1);
}

See Also cjcfstkjmp

AMX CFire Target Guide KADAK B-13

cjcfmcopy cjcfmcopy
cjcfmset cjcfmset

Purpose Copy a Block of Memory
Set (Fill) a Block of Memory

These procedures are provided for AMX portability. They are not
replacements for C library procedures memcpy or memset.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZTF.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfmcopy(int *sourcep, int *destp,

unsigned int size);
void CJ_CCPP cjcfmset(int *mempntr,

unsigned int size, int pattern);

Description sourcep is a pointer to the integer aligned block of memory which is to be
copied to the destination.

destp is a pointer to the integer aligned block of memory which is the
destination of the block being copied.

mempntr is a pointer to the integer aligned block of memory which is to be
filled with pattern.

size is the number of integers to be copied or set. The number of bytes
copied or set will therefore be size * sizeof(int).

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Restrictions The source and destination blocks must not overlap unless destp is lower
in memory than sourcep.

ISPs and Timer Procedures should not fill or copy large blocks of
memory. Failure to observe this restriction may impose serious
performance penalties on your application.

Example #include "CJZZZ.H"

#define BLOCKSIZE 1024
static int srcarray[BLOCKSIZE];
static int dstarray[BLOCKSIZE];

void CJ_CCPP blocksetcopy(int pattern) {

cjcfmset(srcarray, sizeof(srcarray), pattern);
cjcfmcopy(srcarray, dstarray, sizeof(srcarray));
}

B-14 KADAK AMX CFire Target Guide

cjcfout8 cjcfout8
cjcfout16 cjcfout16
cjcfout32 cjcfout32
Purpose Write to an 8, 16 or 32-Bit Output Port

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype in file CJZZZTF.H or macro in file CJZZZCC.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfout8(void *port, CJ_T32 data);
void CJ_CCPP cjcfout16(void *port, CJ_T32 data);
void CJ_CCPP cjcfout32(void *port, CJ_T32 data);

Description port is the address of an 8, 16 or 32-bit memory-mapped device output
port.

data is the 8, 16 or 32-bit value to be output to the port.

Interrupts � Disabled � Enabled � Restored

Returns Nothing
Cjcfout8 outputs the least significant 8 bits of data to the port.
Cjcfout16 outputs the least significant 16 bits of data to the port.
Cjcfout32 outputs the full 32 bits of data to the port.

Example #include "CJZZZ.H"

/* Console status register */
#define CONSTAT ((CJ_T8 *)0xFFFA002DL)

/* Console data register */
#define CONDATA ((CJ_T8 *)0xFFFA002FL)

void CJ_CCPP conout(char ch) {

/* Wait for ready */
while ((cjcfin8(CONSTAT) & 0x80) == 0)

;

/* Write character */
cjcfout8(CONDATA, (CJ_T32)ch);
}

See Also cjcfin8, cjcfin16, cjcfin32

AMX CFire Target Guide KADAK B-15

cjcfstkjmp cjcfstkjmp

Purpose Switch Stacks and Jump to a New Procedure

This procedure is provided for AMX portability.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZTF.H.
#include "CJZZZ.H"
void CJ_CCPP cjcfstkjmp(void *vp, void *stackp,

CJ_VPPROC procp);

Description vp is a pointer which is passed as a parameter to the new procedure.

stackp is a pointer to a properly aligned block of memory for use as a
stack. For the ColdFire family, the stack must be 16-bit word aligned.
For some ColdFire processors, performance will be improved if the
stack is 32-bit long word aligned.

Stackp must point to the top of the memory block since the processor
stack builds downward by popular convention.

procp is a pointer to the new procedure which is prototyped as follows:

void CJ_CCPP newfunc(void *vp);

For portability using different C compilers, cast your procedure pointer
as (CJ_VPPROC)newfunc in your call to cjcfstkjmp.

Interrupts � Disabled � Enabled � Restored

Returns There is no return from cjcfstkjmp. Use cjcfjset and cjcfjlong if
there is a requirement to return to the original stack.

Restrictions The new procedure referenced by procp must never return. The
procedure can call cjtkend to end the calling task.

Example See the example provided with cjcfjset and cjcfjlong.

See Also cjcfjlong, cjcfjset, cjtkend

B-16 KADAK AMX CFire Target Guide

cjcftag cjcftag

Purpose Convert a String to an Object Name Tag

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZTF.H.
#include "CJZZZ.H"
CJ_TYTAG CJ_CCPP cjcftag(char *tag);

Description tag is a pointer to a string which is a one to four character name tag.

Interrupts � Disabled � Enabled � Restored

Returns The name tag string is converted to a 32-bit name tag value of type
CJ_TYTAG which is returned to the caller.

If the name tag string is less than four characters, the returned name tag
value is 0 filled. If the name tag string is longer than four characters, the
returned name tag value is limited to the first four characters of the string.

Example See any of the cjXXbuild examples in which an object name tag string is
converted to a name tag value for insertion into the object definition
structure.

See Also cjksfind, cjksgbfind

AMX CFire Target Guide KADAK B-17

cjcfvol8 cjcfvol8
cjcfvol16 cjcfvol16
cjcfvol32 cjcfvol32
cjcfvolpntr cjcfvolpntr
Purpose Fetch a Volatile 8-Bit, 16-Bit, 32-Bit or Pointer Value

Use these procedures to fetch the content of a volatile variable if the C
compiler does not support the C keyword volatile. These procedures (or
macros) also guarantee that multiple byte fetches will be done in an
indivisible fashion.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype in file CJZZZTF.H or macro in file CJZZZCC.H.
#include "CJZZZ.H"
CJ_T8 CJ_CCPP cjcfvol8(void *varp);
CJ_T16 CJ_CCPP cjcfvol16(void *varp);
CJ_T32 CJ_CCPP cjcfvol32(void *varp);
void * CJ_CCPP cjcfvolpntr(void *pntrp);

Description varp is a pointer to an 8, 16 or 32-bit variable.

pntrp is a pointer to a pointer variable.

Interrupts � Disabled � Enabled � Restored

Returns Cjcfvol8 returns an 8-bit signed value from *varp.
Cjcfvol16 returns a 16-bit signed value from *varp.
Cjcfvol32 returns a 32-bit signed value from *varp.
Cjcfvolpntr returns a pointer from *pntrp.

Example #include "CJZZZ.H"

extern CJ_T8 controlflag; /* Volatile control flag */
extern int *valuep; /* Volatile pointer */

int * CJ_CCPP readpntr(void) {
int *pntr;

/* Wait until access allowed */
while (cjcfvol8(&controlflag) == 0)

;

/* Wait for valid pointer */
while ((pntr = (int *)cjcfvolpntr(&valuep)) == CJ_NULL)

;

controlflag = 0;
return (pntr);
}

B-18 KADAK AMX CFire Target Guide

This page left blank intentionally.

AMX CFire Target Guide KADAK B-19

cjksivtp cjksivtp

Purpose Fetch Pointer to the AMX Vector Table

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjksivtp(void);

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the AMX Vector Table.

See Also cjksivtrd, cjksivtwr, cjksivtx

B-20 KADAK AMX CFire Target Guide

cjksivtrd cjksivtrd

Purpose Read from the AMX Vector Table

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjksivtrd(int vector, CJ_ISPPROC *oldproc);

Description vector is the processor vector number (0 to 255).
Vectors 5 to 7, 13, 16 to 23 and 48 to 63 are reserved by Motorola.

oldproc is a pointer to storage for a copy of the Interrupt Service
Procedure pointer (or exception service procedure pointer) retrieved
from the specified entry in the AMX Vector Table.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful.
*oldproc contains the Interrupt Service Procedure pointer (or
exception service procedure pointer) retrieved from AMX Vector Table
entry number vector.

Errors returned:
None

See Also cjksivtwr, cjksivtx

AMX CFire Target Guide KADAK B-21

cjksivtwr cjksivtwr

Purpose Write to the AMX Vector Table

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjksivtwr(int vector, CJ_ISPPROC newproc);

Description vector is the processor vector number (0 to 255).
Vectors 5 to 7, 13, 16 to 23 and 48 to 63 are reserved by Motorola.

newproc is a pointer to the new Interrupt Service Procedure.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful.

Errors returned:
CJ_ERNOACCESS AMX Vector Table is not accessible.

AMX was launched with access to its
Vector Table denied.

See Also cjksivtrd, cjksivtx

B-22 KADAK AMX CFire Target Guide

cjksivtx cjksivtx

Purpose Exchange an Entry in the AMX Vector Table

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjksivtx(int vector,

CJ_ISPPROC newproc,
CJ_ISPPROC *oldproc);

Description vector is the processor vector number (0 to 255).
Vectors 5 to 7, 13, 16 to 23 and 48 to 63 are reserved by Motorola.

newproc is a pointer to the new Interrupt Service Procedure.

oldproc is a pointer to storage for the previous Interrupt Service
Procedure pointer (or exception service procedure pointer) retrieved
from the AMX Vector Table.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful.
*oldproc contains the previous Interrupt Service Procedure pointer (or
exception service procedure pointer).

Errors returned:
For all errors, *oldproc is undefined on return.
CJ_ERNOACCESS AMX Vector Table is not accessible.

AMX was launched with access to its
Vector Table denied.

See Also cjksivtrd, cjksivtwr

AMX CFire Target Guide KADAK C-1

Appendix C. AMX CFire ROM Option
An AMX system can be configured in two ways. The particular configuration is chosen
to best meet your application needs.

Most AMX systems are linked. Your AMX application is linked with your System
Configuration Module, your Target Configuration Module and the AMX Library. The
resulting load module is then copied to memory for execution either by loading the image
into RAM or by committing the image to ROM. Such a ROM contains an image of your
application merged with AMX in an inseparable fashion.

The AMX ROM option offers an alternate method of committing AMX to ROM. The
ROM option allows the subset of AMX and its managers required by your application to
be linked together without any application code to form a separate AMX ROM image.
The resulting ROM can be located anywhere in your memory configuration. The penalty
paid for ROMing in this fashion is slightly slower access by application code to AMX
services.

Selecting AMX ROM Options

To support an AMX ROM system, the following files are provided.

CJ512ROP.LKT AMX ROM Option toolset dependent
Link Specification Template

CJ512ROP.CT AMX ROM Option Template
CJ512RAC.CT AMX ROM Access Template

To use the AMX ROM option, you must edit your Target Parameter File to identify the
AMX components which you wish to place in the AMX ROM and to specify where the
AMX ROM is to be located. You can use the AMX Configuration Builder to enter these
parameters as described in Chapter 4.6.

C-2 KADAK AMX CFire Target Guide

Creating an AMX ROM

The AMX ROM is created by using the AMX Configuration Generator to produce a
ROM Option Module which is then linked with the AMX Library to form an AMX ROM
image.

The Configuration Generator combines the information in your Target Parameter File
with the ROM Option Template file CJ512ROP.CT to produce an assembly language
ROM Option Module CJ512ROP.S.

You can use the AMX Configuration Builder to generate the ROM Option Module. Use
the AMX Configuration Manager to open your Target Parameter File. Make the ROM
Option Module selector the active selector. The ROM Option window will become
visible allowing you to view your ROM option parameters. To generate the ROM Option
Module, select Generate... from the File menu.

If you are unable to use the AMX Configuration Manager or are creating your ROM
Option Module from within a make file, you can use the stand alone version of the
Configuration Generator. If your Target Parameter File is named HDWCFG.UP, the stand
alone version of the Configuration Generator utility is invoked as follows:

CJ512CG HDWCFG.UP CJ512ROP.CT CJ512ROP.S

The ROM Option Module CJ512ROP.S is then assembled in exactly the same manner as
your Target Configuration Module HDWCFG.S according to the directions in the AMX
Tool Guides.

The AMX ROM is linked according to the directions in the AMX Tool Guides.

The resulting AMX ROM image file is then committed to ROM using conventional
ROM burning tools. The manner in which this is accomplished will depend completely
upon your development environment. In general, the process involves the transfer of the
AMX ROM hex file to a PROM programmer.

Note that your toolset may require a filename extension other than .S for assembly
language files.

AMX CFire Target Guide KADAK C-3

Linking for AMX ROM Access

The AMX Configuration Generator is used to produce a ROM Access Module which,
when linked with your application, provides access to AMX in the AMX ROM.

The Configuration Generator combines the information in your Target Parameter File
with the ROM Access Template file CJ512RAC.CT to produce an assembly language
ROM Access Module CJ512RAC.S.

You can use the AMX Configuration Builder to generate the ROM Access Module. Use
the AMX Configuration Manager to open your Target Parameter File. Make the ROM
Access Module selector the active selector. The ROM Option window will become
visible allowing you to view your ROM option parameters. To generate the ROM
Access Module, select Generate... from the File menu.

If you are unable to use the AMX Configuration Manager or are creating your ROM
Access Module from within a make file, you can use the stand alone version of the
Configuration Generator. If your Target Parameter File is named HDWCFG.UP, the stand
alone version of the Configuration Generator utility is invoked as follows:

CJ512CG HDWCFG.UP CJ512RAC.CT CJ512RAC.S

The ROM Access Module CJ512RAC.S is then assembled in exactly the same manner as
your Target Configuration Module HDWCFG.S according to the directions in the AMX
Tool Guides.

The AMX ROM Access Module provides access to all of the procedures of AMX and the
subset of AMX managers which you included in your AMX ROM. These ROM access
procedures make software jumps to the ROM resident procedures.

To create an AMX system which uses your AMX ROM, proceed just as though you were
going to include AMX as part of a linked system. Your System Configuration Module
must indicate that AMX and its managers are in a separate ROM. To meet this
requirement, you may have to use the AMX Configuration Manager to edit your User
Parameter File accordingly and regenerate your System Configuration Module. If you do
so, do not forget to recompile the System Configuration Module.

Your AMX application is then linked as described in the AMX Tool Guides. However,
since AMX and a subset of its managers are in ROM, you must include the AMX ROM
Access Module CJ512RAC.O in your list of Oect modules to be linked. By so doing, you
will preclude the inclusion of AMX and its managers from the AMX Library CJ512.A.

Note that you must still include the AMX Library CJ512.A in your link in order to have
access to the small subset of AMX procedures which are never installed in your AMX
ROM.

Note that your toolset may require filename extensions other than .O and .A for object
and library files.

C-4 KADAK AMX CFire Target Guide

Once linked, your AMX application can be downloaded into RAM memory in your target
hardware configuration. Alternatively, your application can be transferred to ROM using
the same techniques that were used to produce the AMX ROM. Regardless of the
manner in which your AMX system is loaded into your target hardware, access to the
AMX ROM via the ROM Access Module is now possible.

For simplicity, the complexities which you will encounter when trying to commit the C
Runtime Library to ROM have been ignored. Refer to your C compiler reference manual
for guidance in ROMing C code and data in embedded applications.

Warning!

If your AMX ROM was created without a particular
manager, then an AMX fatal exit will occur if your system
attempts to access that manager.

Moving the AMX ROM

The AMX ROM is not position independent. Nor is the location of the RAM used by
AMX.

To move either, you must edit the AMX ROM option parameters in your Target
Parameter File to define the new location of the AMX ROM and its RAM. Reconstruct a
new AMX ROM image and burn a new AMX ROM. Then rebuild the AMX ROM
Access Module and relink your AMX system with it.

	Cover
	Table of Contents
	1. Getting Started with AMX CFire
	1.1 Introduction
	1.2 AMX Files
	1.3 AMX Nomenclature
	1.4 AMX CFire Target Specifications
	1.5 Launch Requirements

	2. Program Coding Specifications
	2.1 Task Trap Handler
	2.2 Task Scheduling Hooks

	3. The Processor Interrupt System
	3.1 Operation
	3.2 AMX Vector Table
	3.3 AMX Interrupt Priority and NMI
	3.4 Conforming ISPs
	3.5 Nonconforming ISPs
	3.6 Processor Vector Initialization

	4. Target Configuration Module
	4.1 The Target Configuration Process
	4.2 Target Configuration Parameters
	Fatal Exceptions

	4.3 Interrupt Service Procedure (ISP) Definitions
	4.4 Defining a Fast Clock ISP
	4.5 Null Functions
	4.6 ROM Option Parameters

	5. Clock Drivers
	5.1 Clock Driver Operation
	5.2 Custom Clock Driver
	5.3 AMX Clock Drivers

	Appendix A. Target Parameter File Specification
	A.1 Target Parameter File Structure
	A.2 Target Parameter File Directives
	A.3 Porting the Target Parameter File

	Appendix B. AMX CFire Service Procedures
	B.1 Summary of Services
	B.2 Service Procedures

	Appendix C. AMX CFire ROM Option

