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1 Introduction

In todays newspaper (7 April 2000) an AP story reports on a paper appearing
in the Lancet from a university hospital in Oslo showing that aspirin is as useful
as the method which has been used for years in preventing secondary strokes.
The story reports the observed percentages of secondary strokes in the two
groups as 8.5 and 7.5, and elaborates with amazement that a simple, cheap
remedy can replace a costly alternative. The enthusiastic reporter also tells us
that the study was “extensive,” involving 449 men and women with irregular
heartbeats. Oh, the wonders of modern science, but wait, let me get a pencil.
Hum, with 449 subjects I find that it is not possible to discriminate finer than
about 10 percentage points with any assurance1! This means that the two rates
could really differ by quite a bit, and that the closeness of the observed result is
very likely due to chance. Now I have not read the paper, and the enthusiastic
reporter may have got it all wrong, but the story is common enough, as attested
by quite a few surveys of the literature in several scientific fields.
Cohen (1962) called attention to the phenomenon in the psychological lit-

erature. In his book, Cohen (1988) he elaborated further and discussed it at
length. Others have reported the same thing: Bailar (1992) has a chapter on it
with respect to medicine, and Sedlmeier, and Gigerenzer(1989) and Rossi (1995)
who surveyed the literature some twenty years after Cohen’s book tell a story
of too little change. The tale is much the same if not worse in the physical
sciences — thousands of experimental designs are run every year by engineers
and scientists without adequate evaluation. Indeed most courses which teach
industrial experimentation never mention the topic.
Cohen’s survey concentrated on the power of statistical tests assessed after

the fact, which can indicate too small sample sizes to detect effects of practical
interest. The underlying problem is a failure to match resources to the task.
Not everything one desires can be done. Resources such as subjects and time are
always limited, and some projects are impossible of fulfillment. In engineering
and the physical sciences where I have been a consultant for a time, it is always
possible to work around a problem. To find another way. When I tell an engineer
that an idea is infeasible with the resources at hand, invariably a new idea is
developed, and often what was at first thought to be the goal is discarded and
a new one substituted. The new idea may not come at once, but if the need
is there, it will come, and it will be one capable of execution. I have consulted
enough in psychology, medicine, and social science to know that this can happen
there too. The consulting statistician well knows of what I speak, for too often a
bedraggled experimenter appears on the doorstep lugging a mass of data, about
which the statistician can only provide assurances that it is well and truly dead2.

A sample size calculation is the resource evaluation methodology for con-
trolled experiments. This methodology has been available since Neyman-Pearson
(1933), and although widely acknowledged in academic circles, it has only re-

1The width of a 95% confidence interval on the difference of two proportions in the neigh-
borhood of 0.08 is approximately 10 percentage points.

2Cribbed from R.A. Fisher.

4



cently begun to be used in actual practice. The methodology, using power for
sample size determination, was laid out very carefully in Scheffé (1959), but it
seemed to attract little attention in spite of Scheffé’s considerable reputation
and the adoption of his book as a teaching standard. To a large extent the
recent popularity is due in the social and behavioral sciences to the efforts of
Jacob Cohen, whose massive book, Cohen (1969,77,88), laid out the methodol-
ogy in exhaustive detail. His work was largely ignored from the first publication
until the early 1990’s, but his persistence and many papers seem to have had
some effect; but clearly not as much as had been hoped for according to the
surveys cited above.
Part of the difficulty seems to lie in the awkward nature of the power para-

digm, which insists on precision about alternative hypotheses. In many cases,
an alternative hypothesis must be manufactured in order to use the theory. Con-
sider the qualification of a generic drug, where the null hypothesis is not the
straw man, but in fact something to be proved! Many studies in the social an
biological sciences are indeed intended to establish the validity null hypothesis.
A better procedure in such situations is to select a sample size such that

one may claim the null with reasonable assurance. For this reason an alternate
calculation is offered, wherein sample sizes are calculated such that the resulting
confidence intervals will be suitably small. The idea has received considerably
study. It is of particular concern to those who deal with bioequivalence problems
such as the qualification of genetic drugs: see Westlake (1979) for example.
Jason Hsu (1996) has written extensively on the subject, and has made the
calculations and sample size software freely available over the Internet3. Perhaps
the availability of such a calculation on a Palm device will increase its visibility,
even though it is tucked away and must be consciously accessed so as not disturb
those who are satisfied with the usual methods based on power.
In Wheeler (1974) I indicated practical methods for linear models. My

methodology differs substantially from Cohen’s, in that I focus on the response
scale and differences in its values as the most immediately understandable quan-
tities, and phrase everything in terms of this scale. Cohen references values and
combinations of the parameters, which is convenient from a computational point
of view, but by and large parameters are not things about which most investiga-
tors can make informed judgments. I say, for example, “is a 10% improvement
in quality of economic value to you,” whereas, Cohen prefers to ask, “how small
will you allow the sum of squares of the main effect parameters to become.”
There are of course other differences, and they are discussed later. It should be
noted, that I am far from alone in this viewpoint. Fleiss (1981) for example,
goes to considerable trouble to ensure differences of interest are expressible in a
meaningful way.
My emphasis is on experiments in which a variable or factor is under the

control of the experimenter; that is in experiments where one can make a change
and observe a response, hopefully. For such, the nature of the response should
be well enough understood so that the experimenter can make meaningful judg-

3http://www.stat.ohio-state.edu/ jch/

5



ments about differences on the response scale. This contrasts with “sampling”
situations, where one samples from a population while observing two or more
variates and judges the merit based on some measure of dependence, such as a
correlation. The response in this case is the measure of dependence about which
it is usually difficult to make meaningful judgments with respect to differences
on the scale, which is often dimensionless. For such sampling situations, there
is always a question about the degree to which the statistical assumptions are
satisfied, which adds to the difficulties in justifying a sample size calculation. In
my experience, too many such situations arise because of inadequate thought.
The sample size calculations provided deal mainly with linear models under

various distributions. There is a module devoted to response surface experi-
ments, since that is the business of ECHIP. In addition, there is a multiway
module, which deals with t-tests, main effects, interactions, for normal, bino-
mial, Poisson, and chi-squared data. The binomial includes logistic regression
and contingency tables are treated. There is a general sample size calculation
module which enables sample size to be calculated for any sort of linear model
with data from the distributions cited — part of this is an accurate calculation of
the noncentrality parameters of the noncentral F and chi-squared distributions.
The Exposition section contains an introduction to the ideas at a very el-

ementary level. It discusses important practical matters that are not always
given their proper weight; and of course all the remainder is phrased in these
terms. In particular, I define three terms of importance: (1) least difference of
interest (LDI); (2) resolution bounds; and (3) contrast. These terms are key to
understanding and using the software.
For the convenience of those who are familiar with Cohen’s methods, the

software supports his effect size protocols, but the emphasis is on linear functions
and contrasts, which are more immediate to the experimenter’s need, and which
I trust will be found, by those whose patience I try, to be more useful in the
end. I even allow the calculations to be run in reverse, so that one can find
the power or resolution as a function of the sample size: a practice subject to
misuse, as discussed in Appendix B.

2 Exposition

2.1 What is a sample size calculation, and why is it needed?

This section is for those who know nothing about the subject.

2.1.1 All you need to know

Nomatter how carefully data is collected, it is common to obtain different values
on repetition. Often the investigator will refine the technique in an attempt to
reduce the variation, but there always comes a time when nothing more in this
line is practicable, and other means must be sought. This is where statistics
comes into it, and the variation is reduced by averaging. For most distributions,
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the variation in data averages decreases as the square root of the number of ob-
servations increases. This is not a particularly efficient way to reduce variation,
and should be resorted to only after other methods of refinement have reached
their limit, but that is what statistics offers.
Sample size calculations are all about finding the number of replications

to achieve a desired degree of precision. The precision of a measurement is
commonly indicated by plus an minus bounds. Thus one might say of a mea-
surement, that it is 5 inches plus or minus 1/10 th inches. This usually is just
a rough indicator of the precision, and one is often a bit vague about the 1/10
th part. In statistics, such roughness is replaced by exact statements, and one
says “5 inches plus or minus 1/10 th inches with 95% confidence,” where the
confidence is a probability that can be calculated according to a formula and
which has an exact meaning in terms of repeated frequency. We will not delve
into this precise meaning too closely, since it will take us out of our way. For
the curious, any elementary statistics book will provide details. If you are really
a novice, try Gonick and Smith (1993) or Freedman (1991).
The width of the plus or minus bounds shrink as the square root of the

number of observations increase, and sample size calculations are nothing more
than calculations which find the number of observations that make the bounds
equal to the least difference of interest, LDI. That is it, and now you understand
what it is all about. If you use either the Scheffé or Tukey kernel, the sample
size will be calculated in this fashion, and the Power kernel will produce sample
sizes that do the same thing.
Unfortunately, there is much confusion about sample size calculations. Most

of the confusion comes from the fact that most common sample size calculations
involve the power of a statistical test, which is a hard concept. It involves two
probabilities, not just the one called “confidence” above. You can stop reading
right here and never have to worry further about the details if you adopt the
rule to always set the probability called “alpha” to 0.05, and to always interpret
the probability called “power” as meaning “confidence.” If however, you need
more, read on.

2.1.2 More details

Figure (1) shows the scatter of a measurement with a 95% region marked in curve
A. The proportion outside this region, above the “Critical value,” is referred to
as “alpha,” and called “the significance level,” or sometimes “the size of the
test.” The width of the curve depends on the sample size. The larger the
sample size, the narrower the width. There are two curves, A and B, marked
in this figure. As the sample size increases, both become more concentrated
about their centers, and the overlap decreases. A sample size calculation finds
the sample size so that the overlap becomes small to the degree specified by the
investigator. In a power calculation, one always supposes that there is a type
B curve, and that the problem is to say whether or not an observation comes
from one or the other.
For example, one might measure the weight of test animals, and curve A
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Figure 1: Confidence limits and power

might represent the normal scatter in the measurements. Measurements in the
alpha region would be unusual, and if this unusual behavior could be induced
through some treatment, then there would be justification for a claim of a
significant effect. The claim that would be made is that the treatment has
changed the weight so that in fact distribution A is no longer correct, but in
fact the B distribution represents the scatter about a different weight center.
You have thus tested the hypothesis that the treatment had no effect against
the alternative that the treatment had an effect represented by B.
Before running the test, the sample size is chosen so that the scatter about

both centers will be sufficiently concentrated so that the result will be unam-
biguous. This is the power sample size calculation. Power is the probability
that a B curve will be identified when the treatment actually has an effect — it
is the 90% of the B curve area on the right hand side above the “Critical value.”
In the sample size calculation, the LDI is set equal to the distance between

the centers of the A and B distributions, and a sample size is found such that
the overlap will be whatever the user wants, as controlled by choosing alpha
and power.
It will turn out after the data has been collected, that the width of the

plus and minus confidence bonds about the observed measurements are approx-
imately equal to the LDI when the confidence coefficient is set equal to the
power that was used. Thus the power calculation has achieved the same end
as before, the control of the width of the confidence interval. It has however,
required the investigator to be specific about B, something that is not always
easy to do.
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2.1.3 A final thought

Models are at best approximations. This is especially true in statistics where one
assumes a distribution for the data. It follows that if enough data is taken, there
will be a discrepancy between the model and the data, and a statistical test will
show a significant result. Indeed with enough data, the level of significance can
be made as small as one desires! Berkson (1938) with his tongue only partially
in his cheek asked what is the point in applying a test to a moderate or small
sample if we already know that a large sample will show a highly significant
result?
The problem arises of course from a focus on “statistical significance,” which

can be made arbitrarily small with enough data. If one focuses instead on the
estimate and the errors in its measurement, then all that large quantities of data
will do is increase our confidence about the location of the parameter. Even
when the model is in error, as it almost always is, the estimate will usually still
be of value and the plus or minus bounds will shrink appropriately with the
sample size. It makes sense, therefore, to concentrate on the distance between
these bounds rather on the statistical significance, and this should be the goal in
choosing a sample size — to adjust this distance to an appropriate size, say the
LDI. Either power or a direct calculation based on the width of the confidence
interval may be used to achieve this goal.

2.2 Least difference of interest, LDI

It is obvious that the larger the data set the finer the discrimination. It is also
obvious that the greater the underlying difference between things the easier it
will be to discriminate between them. Detecting a difference in, say, burglary
rates between two affluent suburbs will surely take more data than will detect-
ing a difference between an affluent suburb and an inner city area. These are
fundamental ideas about sample size and differences of interest, and are the
essence of the power problem, which is to decide on the sample size needed to
detect a difference of a given magnitude.
In research, resources are always limited, and it is important to adjust the

quantity to the need. Taking too much data is undesirable for a variety of
reasons: cost being one, but perhaps as important is the fact that excess data
can lead to discriminations which are unimportant in a practical sense, which
being present must be reported and explained, sometimes to the embarrassment
of the researcher and elation of the critics. The task is therefore to find the “right
amount” to take.
Let us start with a very simple situation. Suppose we have two treatments

(or categories, or types, or what you will), such that the data taken in both
may be assumed to come from the same probability distribution, and the only
difference between the two will be with respect to their means. Let µ1 and µ2 be
the population means (or parameters) and µ̂1 and µ̂2 be the sample estimates
of these means when a sample of n observations is taken for each treatment;
that is 2n = N observations in all.
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The goal is to make a decision about the magnitude of δ = µ1 − µ2. Sta-
tistical tests usually suppose δ to be zero, and make their calculations on this
assumption. The reasoning being that if one obtains data which should occur
infrequently on the assumption of δ = 0, then one may reasonably argue against
δ = 0 and conclude that an effect is present.
The magnitude of such an effect is important, because clearly, some mag-

nitudes may be too small to be of practical interest. In the burglary example
above, a difference of one burglary per hundred years is unlikely to be of practi-
cal interest, while one per week may well be. The idea involved here is central.
In all practical situations, there will be some magnitudes too small to matter
and there will be some that are large enough so that they must be considered.
Finding that your watch looses one second a week will hardly matter to any-
thing you care to do. Finding that it looses a minute a day may cause concern,
and five minutes will surely bother you.

Somewhere between the unimportant practically and the clearly important
lies a demarcation value, called the “least difference of interest,” or LDI for
short. In most situations it is likely to be a region rather than a point, a band
of uncertainty; but to get on with things let us suppose it to be a point with
a definite value. This value is central to making statistical decisions, and in
deciding on sample size. Different things will be concluded from the experiment
depending whether or not one decides that δ is less than or greater than the
LDI, and greater sample sizes will be required to detect small δ’s than to detect
larger ones.
The LDI needs to be decided upon before an experiment can get underway.

Too often it is not so decided, and in some situations it is quite difficult.
In many cases, it is a mutable quantity that must be arrived at by adjusting

one’s expectations. For example, marketing may decree that the product will
meet certain specifications. Say, they decide to advertise a failure rate of one
per thousand. To achieve this a research effort involving the testing of 20000
specimens over a six month period will be required, at a cost of $200,000. When
confronted with this fact, it becomes apparent that the benefits are inadequate,
and so a compromise failure rate of one per hundred is agreed upon which results
in a testing effort of $10,000. The LDI was changed. This frequently happens.
There are usually many roads to a destination, and careful considerations may
show that the first route is not always the practical choice.
In the social sciences, the units of the scales are not always well understood,

being in many cases almost artifacts of the procedure. Let me cite the example
discussed in the G*Power tutorial4. Cognitive psychologists studying amnesic
memory observed a score difference of 16 − 14.5 = 1.5 between amnesic and
normal in a stem completion test5. On recognition tests, the difference had
been observed to be 13 − 8 = 5. The difficulty is that these are simply scores
and one has little criteria to use in deciding what the LDI should be. I will

4Currently available at http://www.psychologie.uni-trier.de:8000/projects/gpower.html
This is a very nice free program, and the documentation contains an informative “state of
affairs” discussion as of 1997.

5e.g. give a word starting with sci.
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discuss this example in more detail later, but for not let it suffice that such
scales occur frequently and must be dealt with. It is not a problem that can
be shifted to other derived quantities as is often attempted, but must be dealt
with directly, and when compromise is necessary, it should be along the lines of
the previous paragraph: that is changing one’s expectations rather than bulling
ahead and taking data that cannot achieve a goal.

2.3 Resolution bounds

Now that the idea of a LDI has been presented, we move on to discuss ways in
which data may be acquired for its evaluation. If there were no statistical scatter
in data, then one would simply compare the LDI with δ and make a judgment
about importance. There is scatter, however, and so it must be accounted for
in some way. The simplest way is to construct an interval to show the band of
statistical scatter of δ̂ from sample to sample. Suppose the interval is δ̂ ± k.
Now if zero is outside this interval and if the interval really represents the range
of fluctuations of δ̂, then it should be clear that the parameter δ is unlikely to
be zero. With suitable assumptions, this is equivalent to a statement that δ̂ is
statistically significant6.
The interesting case, from our viewpoint, is the other one, when δ̂ is not

statistically significant. That is when zero falls inside the interval δ̂ ± k. This
is the case of a Scotch verdict — not proven. There are two possibilities: (1) δ
is truly zero: (2) δ is non-zero, but too small to be detected by our procedure
in view of the statistical scatter. It is like an election where there is a suspicion
of miscount. Clearly if one candidate has won substantially, there will be no
problem, but if the election is close the possibility of miscount can obscure the
results. It all depends on how large the miscount is. If it can be shown to be
small with respect to the vote difference then matters can proceed, but if not,
it is a Scotch verdict.
The diagram in Figure (2) will help. It shows an observation bounded by

a ±k interval which includes zero. Since this interval represents the band of
statistical scatter, it is clearly possible for the parameter δ to be zero, and hence
one could not claim a non zero value with any justification. However, note that
the upper limit of this band, marked as “Resolution Bound” in the diagram is
a limit beyond which one would be surprised to find δ. This resolution bound,
is a reasonable limit on how large δ might actually be, and as such it can be
compared with the LDI to make informed statements about the ability of the
data to resolve the LDI.
The resolution bound is a measure after the fact7 of the quantify, or in

6In case this seems abstract, let me point out that this is the usual situation when mak-
ing a t-test. One supposes that the common distribution of the observations is the normal

distribution with a variance σ2, and thus the constant k is tdf (α) × σ̂/ df , where tdf (α) is
the 100α percentage point of a t-distribution with df degrees of freedom and σ̂ is the sample
estimate of σ. The statement that the confidence interval excludes zero is logically equivalent
to the statement that the t-test is significant at the α level.

7Or post hoc as some are fond of saying :)
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Figure 2: Resolution

terminology to be made precise, of the revolving power of the data. If in the
election miscount, it could be established that the resolution bound of the count
is ±1/8% and that the two candidates differed by 1/2%, then a recount will not
be needed, since it will not change the results.
Earlier I mentioned a cognitive study cited in the G*Power documentation.

In this study the δ̂ for the stem completion test was 1.5. The sample sizes were
4 and 8 subjects each, and the σ̂ was about 3. This gives us, approximately, an
interval of 1.5± 3.88, and a resolution bound of about 5.3. Since the observed δ̂
on a recognition test was 5, and since this was considered an important difference
in practice, it is quite clear that the stem completion test with its resolution
bound of 5.4 was inadequate to detect differences of interest. I will discuss this
further in a bit, because this sort of problem is sometimes treated with what I
believe to be a questionable methodology.
A resolution bound, or its generalization as appropriate, may be defined for

any statistical quantity. For the usual estimates it is quite simply the maximum
absolute confidence limit of the estimate9.

In all cases, a comparison between the LDI and the resolution bound after
the completion of an experiment is a complete expression of the ability of the
experiment to resolve differences of interest. If the LDI is approximately the
same size as the resolution bound, then the experiment was adequately designed,
and one may conclude with reasonable safety that non-significant quantities are
of no practical interest. They still remain unknown, but whatever they may be
they are unlikely to be larger than the resolution bound which matches the LDI
and hence of no practical interest. The Scotch verdict has been set aside.

8t-test 95% confidence limits assuming normality.
9It is important to note that the resolution bound is not equivalent to the bound that may

be obtained by solving for effect size as a function of power: Hoenig and Heisey(2001)
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In most experiments one has several parameters of interest, and it is quite
possible to adjust the experiment so that the resolutions of all estimates are
consistent with the LDI’s. Figure (3) shows the output of the analysis of a near
optimal experiment that was designed to detect a LDI of 4.5 psi. I will not
explain the output in detail. It is a standard ECHIP effects output table, which
is similar to a regression analysis output. The model terms are listed on the
right. I want at this time to call attention to the column labeled “RESLTN.”
This column gives the resolution bound for the non-significant terms in the
model, and it may be seen that they are all in the ball park of the design
goal 4.5, and in this case the experimenter was able to dismiss those terms
and thus the pressure variable from consideration. Whatever the values of the
parameters, they are unlikely to be larger than the LDI and thus to have no
practical effect on the process.
Although a side issue, it is important to note that the LDI and indeed the

effects estimates in this table are in the units of the response, which was psi,
and thus something about which the experimenter could form judgments based
on experience. To appreciate this point, one only has to think of an equivalent
analysis using standardized regression coefficients, where the basic variables
have been scaled to a -1 to +1 range. What, pray, does a 0.1 change in one of
the coefficients mean, and how does it relate to LDI?

2.4 Contrasts

The statistics of most interest in an analysis are linear functions of the obser-
vations. The grand mean of the data is such a linear function, since it is simply
the addition of the data values. Estimates of main effects are linear functions
of the observations, as are estimates of interactions and regression coefficients.
The estimated difference, δ̂ between the sample means of the two treatments
in our simple example above is a linear function of the observations. All such
statistics are estimates of parameters, just as δ̂ is an estimate of δ, and it is in
terms of these parameters that we formulate hypotheses.
One may perform a sample size calculation for any function of the parame-

ters, but linear functions are the most common, and the most common linear
functions are the contrasts. A contrast is just what its name implies, a con-
trast between parameters. the linear function δ = µ1 − µ2 is a contrast, since
it contrasts µ1 with µ2. Such contrasts are commonly referenced by a vector
[1,-1], meaning δ = 1 × µ1 − 1 × µ2. A contrast for three parameters might
be [1,-2,1], which contrasts the extreme parameters with the middle one. The
defining characteristic of a contrast is that its elements sum to zero. Another
contrast for three parameters is [1,0,-1] which contrasts only the two extremes.
A common hypothesis is that a parameter is zero, but such a hypothesis

could be verified only with infinite data, so we agree to a compromise and settle
for the ability to say something like, “if is not zero, it is unlikely to be larger in
magnitude than ∆.” We are guided in our choice of ∆ by the LDI.
One can nominate ∆’s for either of the three parameter contrasts above.
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EFFECTS  RESLTN SIG  TERM

  89.935                0 CONSTANT
  16.118         ***    1 temperature
  -1.271   4.168        2 pressure
  14.977         ***    3 duration
   0.283   3.523        4 temperature*pressure
 -63.471         ***    5 temperature*duration
  -0.809   3.813        6 pressure*duration
 -17.792         ***    7 temperature^2
   0.838   3.266        8 pressure^2
 -14.543         ***    9 duration^2

 Residual SD    = 2.088168
 Replicate SD   = 2.522499

 N terms            = 10
 N unique trials   = 15
 N replicates      = 5
 N total trials    = 20
 Cross val  RMS = 1.906303

Figure 3: Effects output
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The meaning attached to the ∆10 is different in the two cases. For [1,0,-1], the
∆ corresponds to the minimum absolute value of a contrast between two para-
meters, which relates directly to LDI. For [1,-2,1] it corresponds to a contrast
between the middle and end values. In general when one has three parameters,
both contrasts are likely to be of interest, and it may well be that the sample
sizes required to detect the two ∆’s are different, since the sample size depends
on both the value of ∆ and the elements in the vector.
A quandary? Not much of one, since it is easily seen that the larger sample

size will do for both. It turns out that [1,0,-1] requires the larger sample size, so
this is the one that will usually be considered. As far as the sample size calcula-
tion, it does not matter how the parameters are assigned, since the sample size
depends only on the elements in the contrast: i.e. [1,0,-1],[-1,0,1],[1,-1,0],[0,1,-
1],[-1,1,0], and [0,1,-1] require the same sample size.
Popular methodologies currently in use follow Cohen and do not focus on

single contrasts, but rather on an omnibus combination of them. Such calcula-
tions apply to all possible contrasts, the majority of which are of little practical
interest. It would, for example, be rare for the contrast [1/3,1/2,-5/6] to be of
interest, but this and all of an infinity of others are included when the popular
methodologies are used. Now this may not seem to be a terribly important
point, since by using an omnibus combination one will surely capture those con-
trasts of practical interest, and the resulting sample sizes are often not much
different. But there is something more important involved. That is the ability
of the experimenter to relate the omnibus value to practical differences in the
response.
Any single contrast can be directly related to the LDI. In the case of a two-

level contrast, like [-1,0,1], the relation is obvious; the ∆ corresponds directly
to the LDI. For a contrast like [1,-2,1] it turns out that one half the ∆ is equal
to the LDI11. For the contrast, [3,-1,-2] one has LDI equal to 5/14 of the ∆.
etc. Thus for any single contrast, one may find the equivalent LDI, and thus
judge it in terms wholly familiar to the experimenter, assuming of course that
the experimenter understands the response scale. The omnibus combination is
nearly impenetrable to interpretation; so much so that Cohen devised a three
point rating scale, “small,” “medium,” and “large” to allow judgments to be
made. It is very nearly impossible to relate the omnibus combination to LDI’s
or anything of practical interest in terms of the response scale. The concerned
reader might like to read section 3.1 of Fleiss (1981) for illustrations of several
ways to be specific about this matter.
The calculations focus on contrasts. The Response Surface and Multiway

Effects modules ask the user only for the LDI, and produce by default appro-

10The value ∆ is called a detectable value, and is the smallest absolute value of a function
of the parameters that may be detected. To be precise, we mean that a detectable value is
it is the smallest value of a function of the parameters that will produce a significant result
with at least the power designated. Such detectable values when combined with an assumed
probability distribution for the data and with the additional parameters α and power may be
used to calculate a sample size. The ECHIP power calculation program does this calculation.
11Details may be found in Appendix A.
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priate sample sizes for two-level contrasts. The Multiway Effects module allows
the user to specify particular contrasts of interest.

2.5 Effect size, σ and the signal to noise ratio

A common population standard deviation, σ, is assumed for normally distrib-
uted data. Since it is a population parameter, its actual value is unknown, and
to make progress with sample size calculations, some value must be assumed.
The resulting calculations can be only as accurate as the assumed value, which
in practice means that all sample size calculations are approximate. In general,
a sample size calculation for normally distributed observations should not be
taken as a precise calculation. Doubling or halving the calculated sample size
is usually quite acceptable. The calculation should be taken as an “in the ball
park” value, and no extensive effort should be made to achieve it exactly. The
greatest value to be found in calculating sample size is to exclude from con-
sideration those proposed projects whose goals can never be attained with the
resources at hand.
In the equations used to calculate sample size, σ appears only in the ratio

∆/σ, and this leads some to treat this as a “signal to noise” ratio and to ignore
its separate components. This is poor practice, since each parameter in the ratio
has a definite meaning and deserves separate consideration. The ∆ is important
because it is referenced to the LDI, which is a value of immense importance and
which requires careful consideration as has been discussed. The σ represents
the variability in the data, and needs to be determined as precisely as possible
from empirical studies or from a deep understanding of the data generating
mechanism.
To be clear, σ represents the statistical error in the observations. It may be

estimated by replicate tests. If for example, the observations are viscosity mea-
surements of paint batches, then an estimate of σ may be obtained by repeating
the setup and production of such batches and calculating the sample standard
deviation of such replicates. It is important not to confuse such full scale set
up repeats with the variation that might be observed by sampling repeatedly
from the same setup, since this second variation will usually be smaller, and not
represent the setup to setup error. As another example, consider a cognitive
test to be applied to individuals. The σ should be an estimate obtained from
replications of this test on individuals, and not from replicate tests on the same
individual from time to time. In short σ should be estimated in exactly the
same way that it will be in the actual testing.
The failure to keep these two parameters separate will result in a vagueness

in the results that may well obviate their utility. The current practice of ignoring
this advice by using a signal to noise combination such as Cohen’s f, leads to
the need to choose vague “small,” “medium,” and “large” criteria. Such choices
place no restriction on the LDI, and their use conceals the fact that small,
medium, and large sample sizes are being specified. Consider an experiment
in which the quantity of interest may be measured with different instruments
— say a micrometer and a desktop ruler. The use of a “medium” criterion will
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produce the same sample size for the school ruler and the micrometer even
though a specified LDI will be more difficult to detect with the desktop ruler.
The idea is pernicious. Lenth (2001) makes some interesting comments about
this.
Cohen was quite proud of his systematic treatment of this three element clas-

sification, since he says, referring to it, in the preface to Cohen(1969), “Whatever
originality this work contains falls primarily in this area.” I am sure others feel
as he did, but I am also sure that there are those who see it as I do as an
obfuscation, and the discarding of important information.

3 The number pad

Figure 4: Number Pad

Figure (4) shows the number pad which appears when any field is clicked.
It may be used to either select digits, or write in values using Graffiti. It may
be turned on and off by clicking on the “NumberPad” menu item. When it is
turned off, values may be entered into fields using Graffiti. As these values are
entered the other fields automatically change.

4 The Response Surface Module

This module is intended to be straightforward to use, and is structured to deliver
good answers for those doing response surface experimentation.

The initial screen is shown in Figure (6). Many users will never need to
do more than is available on this screen. This screen shows that the required
sample size is about 18 trials for a linear model when both the σ and the LDI
are equal.
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Figure 5: Initial settings

Figure 6: Initial settings

When calculating sample size, attention need be paid only to a single variable
pair of variables. The full model may involve many variables, but its nature is
irrelevant for the calculation. There are a couple of reasons for this, but the most
important ones are that the experimental design is assumed to be highly efficient
and that only about 5 or 6 extra trials are taken to estimate the experimental
error. This is typically the case with an ECHIP design.
In general, a best guess at the actual experimental error should be input in

the Sigma field. The better the guess, the more accurate will be the sample
size (Total N) prediction. The sample size that is produced by the calculation
should not be taken as absolute. Half or twice the value output will usually be
acceptable — this is because of the uncertainty about σ. See Section (4.3.1) for
situations in which this rule does not apply.
The experimental design will require a certain number of trials due to its

combinatorial nature; but this is only part of the story because the goal is
to detect effects of certain magnitudes which is determined by a sample size
calculation. If the design is not large enough to detect effects of interest, then
it will have to be at least partially replicated to attain the number indicated by
the sample size calculation.
The decision about sample size is made by comparing the detection ability of

a design with the LDI, the least difference of interest, which is in the units of the
response. It is a value that can be discussed and agreed upon as a worthwhile
minimum, or changed if that seems wise. After the fact, it will be found that
statistically insignificant effects are unlikely to have magnitudes larger than the
LDI. The factors associated with such effects can thus be put aside as not worthy
of investigation. They may be revisited later if a decision is made to lower the
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LDI.

Figure 7: Abrasion example

Example: As an example to firm up ideas, consider an experiment investigating
abrasion loss in grams per hour (gph) of a material. A loss of 10 gph is
negligible, but a loss of 500 gph is substantial. Someplace between the
two one finds a value on the borderline between negligible and interesting.
This value is determined by the practical implications of abrasion loss such
as cost or appearance factors. This value is the LDI. Say it is 100 gph, and
say also that σ seems to be in the neighborhood of 200 gph. Figure (7)
shows the calculation, which indicates that a total of 74 trials are needed.

This is a substantial sample size in industry, and may well represent more
effort than is possible. If so, there are two choices. (1) Redefine the LDI
to a larger value. (2) Think very hard about the test, the measurement
and the whole proposal, and try to decrease the measurement error or
find a different solution. The second choice is always interesting, and
sometimes on consideration, the problem shifts to quite a different one,
as for example the realization that abrasion is not the response of most
interest, but rather some measure of hardness.

4.1 Model choice

Figure (8) shows the models available from the drop down list. They correspond
to those available in ECHIP. The LINEAR and CATEGORICAL models involve
a single variable, while the others involve two variables.
The required sample size increases with the complexity of the model, because

a more complex model describes a more complex surface. Figure (9) shows the
calculation for a quadratic model, which indicates that 91 trials are required to
detect a LDI equal to σ. The linear model in Figure (6) required only 18 trials.

19



Figure 8: Model choices

Figure 9: A quadratic model
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Because sample size increases with model complexity, the shrewd experi-
menter will prefer to run experiments sequentially, and build up to the complex
models using design augmentation. Of course, this is not always possible, and
worrisome problems such as random shifts in the environment between experi-
ments must be considered, but when possible it should be attempted.

Figure 10: A Categorical Variable

The only model that needs special comment is the categorical model, and
this is because when it is chosen a Levels field appears, as is shown in Figure
(10). Most of the time, a sample size calculation involving a single categorical
variable is all that is necessary, and this is all that is provided in this module.
If it is important to plan for more, the Multiway Effects Module may be used.

4.2 Guessing σ

Perhaps the greatest good that comes from a sample size calculation, lies in
the rejection of bad experiments. If any reasonable guess at σ produces an
impractical sample size, then the proposal deserves more thought, and only
foolish researchers will proceed to an almost certain failure. There do seem
to be a number of such fools around nowadays, as the references cited in the
introduction show. People in groups or in committees seem to be more foolish
than individual investigators. I seldom encounter a researcher so stubborn as
to proceed in the face of sample size evidence, but I have often seen task forces
plod on to certain doom.
Steps should be taken to estimate σ as precisely as possible. Often pertinent

data is at hand, and sometimes replicate trials can be run to firm up a guess;
but except in unusual situations, it is not usually worthwhile to expend a large
amount of effort for this purpose. Experience indicates that the likelihood of
success is large if it is possible to run an experiment with the number of trials
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ranging from half to double the value produced by the sample size calculation.
There are a number of reasons for this, but basically things are too uncertain
before an experiment to justify great precision in this matter. The best strategy
seems to be to “get in the ballpark.”
There is one point that causes confusion for those who do not often work

with statistics, and this is about the sources of variation, and what σ is sup-
posed to represent. The parameter σ is the population standard deviation of
response variable. It is the value that describes the variation of this variable
upon repetition. It does not represent the error in measuring this variable alone,
but the error in the setup of the process as well. Too often engineers mistake the
measurement part for the whole. For example, suppose the response variable
is the viscosity in a container, and that each experimental unit is a container.
The error in the viscosity measurement is only part of the error. The whole
of the error is a collection of errors due to the set up and production of the
container. The simple rule is to look at the units that will form the data for
the final statistical analysis. It is the total error in these units that should be
estimated and used as σ.

4.3 Parameters

Figure 11: The parameters dialog

This section is more technical, and should seldom be of concern or interest
to most users.

The parameters dialog may be accessed by clicking the menu button at the
bottom left of the green pad. Figure (11) shows the parameters dialog that will
appear.
Sample size is calculated using the power of a test. For this the Alpha

and Power fields containing the test size and power. The power is set to 0.5 by
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default which experience shows is a good value for response surface experiments.
The numerator df of the F-distribution is set by the complexity of the model.
The denominator df in the Nu2 field is set to 5, since this is the usual value for
an ECHIP design. It should be noted that it is also an appropriate value for
an estimate of the residual error variance: the gain in power for larger values
diminishes rapidly.
The efficiency of the design may be accounted for by adjusting the value of

the G-efficiency in the Geff field, although in general there are too many other
uncertainties in sample size calculation to make this of much value.

4.3.1 Non-normal distributions

Figure 12: Distributions

The distributions that are available are shown on the drop down list in
Figure (12). Switching to any non-normal distribution changes the fields on the
main screen. For example, choosing binomial results in the display shown in
Figure (13). Non-normal distributions are treated by transforming the response
using a normalizing transformation. For such, it is necessary to specify the LDI
with respect to two values. For more details the interested reader may consult
Section (5.9) in the Multiway Effects documentation.
One final comment is appropriate here. It is necessary to guess the unknown

parameter σ when a normal distribution is assumed. This is unnecessary for
non-normal distributions, and thus their sample size calculations turn out to be
more reliable than the normal ones, even though an approximate normalizing
transformation needs to be used in order to make the calculations!
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Figure 13: Calculation with a binomial distribution

5 The Multiway Effects Module

This section and the module it describes, assumes some statistical knowledge.
Terms like “degrees of freedom,” “ANOVA,” “regression,” “test size,” “power,”
and “probability distribution” are assumed to be familiar and used without
explanation. It is unlikely that anyone would attempt a sample size calcula-
tion without this knowledge, but for those who are interested an do not feel
comfortable, the two references previously given may be helpful: Gonick and
Smith (1993) or Freedman (1991), and in addition Moore and McCabe(1993) is
a standard elementary textbook containing a great many examples.

5.1 The starting screen

Although this module deals with a variety of distributions and calculations, the
central theme is linear models which includes both regression and ANOVA. Even
though the calculations are made for particular variables or sets of variables,
a more complex model is assumed. This is input to the program through the
EffectsDF field. This field should contain the sum of all effects in the model.
For regression this is the number of terms in the model, excluding the constant.
For ANOVA, the degrees of freedom allocated to effects is illustrated for the
three-way case in Table (1). Here there are three factors at levels I,J,and K.
The sum of the effects is inserted in the EffectsDF field in the program.
Figure (14) shows the startup screen for the MultiWay module. The top left

of the screen shows that there is one factor at 2 levels, and that there are 6 df
for effects; that is all factors involved in the model account for a total of 6 df.
The “Total N” which appears in the box in the center of the screen indicates
that there are 27 observations in all (i.e. the sample size is 27). From Table (1),
it may be seen that this means that the “Error” is 27-1-6 = 20 df.
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Table 1: ANOVA df

Source df
A main effects I-1
B main effects J-1
C main effects K-1
AB interactions (I-1)(J-1)
BC interactions (J-1)(K-1)
AC interactions (I-1)(K-1)
ABC interactions (I-1)(J-1)(K-1)
Effects total (= EffectsDF) IJK-1
Error (= ν2) IJK(M-1)
Total IJKM-1
Total N IJKM

Figure 14: Startup screen
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The calculation that was made to find his Total N of 27, started with the
information that there was one factor at 2 levels and that the EffectsDF was 6. It
made use of the other entries shown on the screen and iterated until everything
balanced. The result was a sample size of 27. In this case, it means that with a
total sample size of 27, a LDI of 1 unit between the levels of a two level factor
will be detected with a power of 0.7 for a 0.05 level test. It also means that the
width of a confidence interval, or resolution bound, on the observed difference
between the two levels will be approximately 1 unit wide.

Figure 15: One sided test

Example: As an illustration, suppose an experimenter were measuring the time
in seconds for a chemical reaction to respond to a catalyst, and suppose
the population standard deviation of the measurement error was 1 second
(σ = 1), and that this was also the least difference of interest, LDI: then
if catalyst A and catalyst B were each used in 13 trials, a difference in
their reaction times would likely be detected if the population difference
exceeded 1 second.

When the model involves a single two level variable, it is sometimes possible
to specify in advance a one sided hypothesis. Thus when there is a single two
level variable and when the EffectsDF field is set to 1, a one sided checkbox
appears as in Figure (15), where it may be seen that for a one sided test the
sample size is slightly smaller.
The calculation was made for only one factor, but there are other factors in

the model, and calculations may be made for any of them. For example, if in
this same experiment, the interest were focused on the interaction between a
two and three level factor, then the calculation would appear as in Figure (16),
where it may be seen that now a sample size of 49 is required. It is assumed in
this that the experiment giving rise to the interaction is balanced so that the
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Figure 16: A 2x3 Effect

49 observations are divided among the 6 cells so that each cell receives about 8
observations.
In practice, the number of trials required by the combinations of the factors

places a lower bound on the sample size. In the case illustrated, the design
involved at least two factors; one at 2 levels and one at 3 levels. This means
that the design requires at least 6 trials for its structure. Had there been more
factors, then there would have been more trials required by the nature of the
design. It can happen that a sample size calculation indicates fewer trials than
are required by the design. It can also happen, as it did in this illustration, that
the sample size is larger than that of the design combinations; in which case,
some of the design combinations must be replicated.
Replicated trials are used in the analysis to improve the estimate of error, but

often there are many more replications than are really needed for this purpose12.
In the illustration, 49 trials are required, most of which will be allocated in
the analysis to the error term. The trials are of course needed to detect the
differences of interest, but allowing them to be used only for improving the
error term is wasteful. A strategy used by the best experimenters is to include
additional factors in the experiment.

5.2 Menus and drop down lists

There are two menus and one drop down list. Figure (17) shows the menus and
Figure (18) the list. The menus are accessed by clicking on the menu button at
the lower left of the green keypad.
The first menu provides the following options:

1. NumberPad: Starts and stops the number pad.
12In general the point of diminishing returns sets in at about 5 or 6 df for error!
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Figure 17: Menus

Figure 18: The distribution drop down list.
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2. Special Contrast: Allows the input of theta values for special contrasts.

3. Cohen’s f: Switches back and forth from LDI to Cohen’s f

The second menu allows the choice between various kernels for the calcula-
tions:

1. Power: Finds sample size using power. This is the default.

2. Scheffé: Finds sample size using Scheffé’s multiple comparison intervals.

3. Tukey: Finds sample size using Tukey’s multiple comparison intervals.

The drop down lists allows the choice of a distribution:

1. Normal: The distribution is normal. This is the default.

2. Binomial: The distribution is binomial. This enables logistic analysis.

3. Poisson: The distribution is Poisson.

4. χ2 Variance: The distribution is χ2, and may be used to analyze variances.

5. χ2 Conting: The distribution is χ2, and may be used for contingency
tables and goodness of fit.

5.3 Exact Calculation Button

Figure 19: A 2x3 Effect after an exact calculation.

Palm devices are surprisingly capable, but still they are not full size comput-
ers, and cannot be expected to perform complex numerical calculations instantly.
For this reason, most calculations are performed in approximate mode. It is usu-
ally quite accurate. An alternate mode is available for calculations which may
possibly be improved upon. When this is possible an “exact calculation button”
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will appear at the lower left of the screen. Clicking on this button will engage
an exact calculation. An hourglass icon will appear on the screen and remain
while the calculation is being performed. Have patience, let it run its course.
Pressing the exact button for the example in the previous section produces

the result shown in Figure (19). It may be seen that the result is only slightly
different: a change from 49 to 50 in sample size.
In those rare cases where numerical difficulties prevent an exact calculation,

an asterisk will appear beside the exact button.

5.4 Special Contrasts

Figure 20: MultiWayTheta

When the “Special Contrast” menu item is selected. An entry field labeled
“Theta” appears. Into this may be entered the specification for a special con-
trast, as shown in Figure (20). The default contrasts are two-level contrasts,
having elements -1 and 1. These are usually the most interesting contrasts.
When the special contrast menu item is first selected, the theta for the appro-
priate two-level contrast is shown, as it is in Figure (20). For this 2x3 table, the
two-level contrast elements are as shown in the left of Table (2).

Table 2: Contrast elements for 2x3 tables

1 0 -1 1 -2 1
-1 0 1 -1 2 -1
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Theta is defined as the sum of squares of the elements of a contrast divided
by its range. For the two-level contrast, this gives 4/22 = 1, as shown at the
left of Figure (20). For the contrast shown at the right of Table (2), one has
theta = 12/42 = 0.75 as shown at the right of Figure (20). The sample size
has increased to 64. Changing the contrast has therefore made a difference,
but please note that this difference is unlikely to be important because σ is
unknown. In general σ will not be known within a factor of two, which means
that one might reasonably choose to use any sample size from 25 to 100.

Figure 21: Carnauba Wax example

Example: A manufacturer of fiber reinforced plastic products uses Carnauba
Wax in a process. There are three suppliers for this wax, and the question
of the equivalence of the products has arisen. It has been decided to
compare them with a test. If A, B and C denote the three suppliers, and
if y is an average value for a process characteristic that will be affected by
the wax, then pairwise contrasts like yA − yC will be interest, but since
supplier C seems to give better service, the comparison yA + yB − yC
needs to be examined too. For this last comparison θ is 3/4, and just
for illustration suppose σ = 1 and LDI = 1. Figure (21) shows the
calculation, where it may be seen that 51 observations will be needed,
or about 17 per wax. As usual, however, the pairwise contrasts, require
a larger sample size, some 75 observations or 25 per wax, and thus the
prudent experimenter will use this sample size.

5.5 Cohen’s f

Cohen’s f is defined as the standard deviation of a set of parameters divided
by the population standard deviation. This is a vague dimensionless unit, that
can be related to actual effects only by special arguments. Such arguments are
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given in Cohen (1988). The problem is so awkward that Cohen assigned three
values to be used universally for all effects (main or interaction). These are 0.10
for “small,” 0.25 for “medium,” and 0.40 for “large.”

Figure 22: Using Cohen’s f with a “medium” effect size.

Example: Figure (22) shows a calculation for the Carnauba wax example in
Figure (21) using Cohen’s “medium” value for f. The sample size is 195.
A “large” value would have to be used in obtain sample sizes on the order
of those produced for the contrasts in Figure (21). This hardly seems
reasonable for the problem, and points up the vagueness of these effect
sizes.

It is difficult to compare calculations involving more than one factor with
the tables from Cohen (1988). He tabled things in an odd way and made
compromises that lead to erroneous results. A better way is to use G*Power
whose URL is given on page (10).

5.6 Calculating power instead of sample size

If the checkbox beside Power is checked, power will be calculated instead of
sample size. Figure (23) shows the result of such a calculation. The resulting
power is 0.699, which differs from the 0.7 that was input originally because the
sample size of 49 is an integer and rounding has occurred.
This sort of calculation is occasionally interesting, but it should not be used

as a substitute for resolution bounds. The post hoc calculation which is dis-
cussed in Appendix B is statistically unsound.

Example: The Chapin Social Insight Test is a psychological test designed to
measure how accurately the subject appraises other people. The scores
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Figure 23: Power calculated as a function of sample size.

Figure 24: Power for Chapin Social Insight Test
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range from 0 to 41. A sample of about 300 students evenly divided between
males and females was available, and it was proposed to administer this
test as part of a battery. The sample standard deviations usually run
about 5. Figure (24) shows that for an LDI of 2, the power is about 0.95.
It is of course possible that the test measures noting at all, but 2 seems a
small number in view of the range of scores. The experiment was run, and
the difference between the averages of the scores for the two sexes was 1
which was not statistically significant. The resulting claim of no difference
between the sexes was supported by the fact that the confidence interval
on the difference in averages ran from -0.25 to 2.25. Clearly if there are
differences, they must not be greater than 2.25 or so.

Alert: It should be noted that the power will sometimes change substantially.
This is because power is usually calculated precisely, while by default, sam-
ple size is calculated approximately. The exact calculation button should
be cliked before using power checkbox in order to avoid this behavior.

5.7 Scheffé’s kernel

Selecting this kernel changes the sample size calculation from a power calculation
to one in which the widths of confidence intervals are set equal to the LDI. Figure
(25) shows the calculation corresponding to Figure (19), which indicates that 59
observations are required instead of the 49 given by power. This is a negligible
change.

Figure 25: Sample size using the Scheffé kernel.

The Scheffé kernel controls for all possible contrasts even though the sample
size is for the particular contrast specified. This means that as the number of
cells under consideration grows, so will the sample size. The interested reader
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may like to refer to Scheffé (1959) for more details about the S method of
multiple comparison which is used.

Figure 26: Cardiovascular study using the Scheffé kernel.

Example: As part of a study of cardiovascular function, individuals of both
sexes from four occupation groups are to be studied. The design is simply
a replicated 2x4 with 7 degrees for all effects. Heart rates after 6 minutes
of a specified exercise are to be measured. The average heart rates of males
may be taken to be about 130 and that of females about 150. Various sets
of data indicate that the standard deviation for individuals is in the 12
to 17 range. The goal is to detect differences larger than 10 between the
occupations if it exists.

A power calculation with α = 0.01, power = 0.70 and σ = 15 gives a
sample size of 240, or about 60 individuals per group. If instead α = 0.05
had been assumed, then the sample size would have been only about 160,
or 40 per group. Figure (26) shows the calculation using the Scheffé kernel
which indicates a need for some 266 subjects, or about 65 per group.
These differences are not of great practical importance, because of the
uncertainty about σ, and the prudent experimenter will choose something
in the neighborhood of 60 per group.

5.8 Tukey’s kernel

This kernel is most appropriate for two-level contrasts. It differs from Scheffé’s
kernel in that it does not control for all possible contrasts, but for a subset of
them. Figure (27), shows the calculation corresponding to Figure (19), which in
this case gives a sample size of 106. Clicking the exact button does not change
the result. This sample size is larger than that given for the Scheffé kernel, but
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Figure 27: Sample size using the Tukey kernel.

in general, the Tukey sample sizes will be the smaller. The interested reader my
refer to Scheffé for details about the T method which is used.

Figure 28: Cardiovascular study using the Tukey kernel.

Example: Figure (28) shows the calculation for the cardiovascular example
from Section (5.7). It may be seen that in this case, the use of the Tukey
kernel produces a sample size of 221 which is smaller than that from either
the Scheffé kernel or the power kernel.
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5.9 Binomial, Poisson, and χ2 Variance

An important characteristic of the normal distribution is that it is unbounded
in both directions. Non-normal distributions are bounded on one or two sides.
This causes a compression of values near the boundary. With normality the
LDI remains constant.
For non-normal distributions the LDI changes as it nears a boundary. For

example, the proportions of a binomial variable are bounded between zero and
one. Thus the difference between 1% and 2% is often meaningful and important,
while that between 50% and 51% may be negligible. For example, it might be
a cause to celebrate if a defect rate could be reduced from 2% to 1%.
The Poisson and χ2 distributions are bounded by zero, since all values must

be positive, and as values approach zero they bunch up, and the LDI must
change to accommodate this. For them, as for the binomial, the LDI changes
across the scale.
This dependence on scale makes things difficult, and a common approach is

to transform the response to an unbounded scale, and then to use existing the-
ory on the transformed values. Such transformations frequently have the effect
of making the resulting data appear to be normally distributed with constant
variance, and such transformations are sometimes referred to as “normalizing
transformations,” or “variance stabilizing” transformations. I use such trans-
formations in this program.
The rub is of course, that the transformed data isn’t really normal, and any

calculations made on that assumption must be considered approximate. The
proper way to deal with the problem is by use of a generalized linear model,
winch not only transforms but adjusts the calculations to the distribution. See
McCullagh and Nelder (1989) for details. Unfortunately, the calculational com-
plexities of this method make sample size calculations for complex linear models
rather difficult since, among many difficulties, the coefficients are obtained by
an iterative calculation.
Asymptotic13results can be used to partially overcome these difficulties, but

they apply only to large samples.
The most practical way seems to be to use a variance stabilizing transforma-

tion which I have done. A simulation study with respect to this would be useful.
In addition, for those common situations where the comparison is between two
groups, I use accurate calculations from the literature.
In spite of the use of a transformation, sample size calculations for non-

normal distributions are more reliable than those made assuming normality,
because for them there is no need to guess at σ. Whereas the normal results
are only “in the ballpark” the non-normal results are “on the money.”

13Asymptotic calculations have been made for the binomial and Poisson cases. Whittemore
(1981) treated the binomial and Signorini (1991) the Poisson. Both assume the independent
variables to be random, which presents a problem to those who would use their results in a
fixed effects case which is what almost all standard analysis methods assume.
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5.9.1 Binomial and logistic

5.9.1.1 Binomial Since the binomial scale is not uniform, two proportions
are required to locate the LDI. These proportions P1 and P2 are transformed
and their transformed values are used to set the LDI on the transformed scale,
which is hopefully a uniform scale. The transform used is the arcsine transfor-
mation: that is a proportion p is transformed to (2arcsin

√
p). The result is a

variable with constant variance and an approximately normal distribution.

Figure 29: Binomial (logistic) calculation.

Figure (29) shows fields for two values, P1, and P2. In this figure P1 is 0.05,
and P2 is 0.07, which is about 40% larger. The actual calculation is done on
the transformed scale using an LDI that corresponds to the difference between
the P’s on the proportion scale. The result in this case is enormous, 15291
observations are required to detect a difference between two levels. A change of
40% between values near the center of the scale would result in a much smaller
sample size. For example if P1 were 0.50, and P2 were 0.70, then the sample
size would be only 645.
One may switch to the binomial to perform any of the available sample

size calculations, and may analyze the results using ANOVA, regression, or
any other appropriate technique, after first transforming the observations to a
normal scale. One may also use a generalized linear model procedure such as
logistic regression — this procedure is available in ECHIP.

5.9.1.2 Logistic There are a number of research areas in which linear mod-
els are appropriate with binomial response variables. Cohort studies, for ex-
ample, in which subjects are followed over time and a binary response, such as
death, are modeled as functions of several variables, or planned experiments in
which subjects are subjected to combinations of treatments. For most of these
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the preferred transformation during analysis is the logistic transformation, and
the analysis is referred to as logistic regression or ANOVA. The transformation
is logit(p) = log(p/(1 − p)) and where p is a proportion. The logits are then
modeled with a linear model in the independent variables of the problem, which
might look like logit(p) = µ0 + µ1x1 + µ2x2 . . . The µ0 coefficient represents
the model intercept, and if the variables are properly coded, the center of the
data. See Hosmer and Lemeshow (1989) for details about logistic regression.
The LDI’s on the logit scale are those appropriate for values near µ0.
The logit transformation produces unbounded values, but the tails of the

distribution are not a good match for the normal; hence I use the arcsine trans-
formation rather than the logit to calculate the sample sizes.
Whittemore (1981) gives sample size calculations for logistic regression using

asymptotic approximations which in general apply only for small probabilities.
She also assumes the independent variables to be random, which requires the re-
searcher to be specific about their distribution. Her results depend very heavily
on this specification.

Figure 30: Fisher’s exact calculation.

5.9.1.3 Calculations for two samples In many situations, there is only
one variable under investigation, and that one has only two levels, which is to
say that is there are two proportions to be compared. The problem has a consid-
erable literature since it is very common and very important. It may be modeled
as a 2x2 contingency table, and tested using the χ2 approximation, but an exact
test is available, called Fisher’s exact test, Fisher (1935), and the literature con-
tains methods for calculating exact sample sizes. It seems reasonable to suppose
that users are likely to be interested in the exact calculation, so when there is
a single two level factor, a sample size is calculated for Fisher’s exact test. The
procedure implemented here is due to Fleiss (1980), which is an approximation,

39



but a very good one. Casagrande and Pike (1978) give some exact values that
may be compared with the program’s calculations. For this calculation, one
may choose either a one or two sided test by checking the checkbox.
It is interesting to compare this exact result with that of Whittemore. If

one chooses a small proportion, the sample size will be large enough to justify
her calculation. She gives an example involving the effect of serum cholesterol
levels on coronary heart disease, CHD, in which the base probability that an
individual will develop CHD during a period is 0.07, and indicates that the
total sample size should be 582 to detect a change by an odds ratio of 1.65
when the test is a one sided test at 0.05 with 0.90 power. Such an odds ratio
implies that the probability under the alternate hypothesis is 0.1105, and for
this the sample size for Fisher’s exact test is 1808, as shown in Figure (30).
There is a considerable discrepancy between these results which is likely due to
her assumption of a normally distributed independent variable. If one assumes a
binomially distributed independent variable with binomial probability 0.5, then
her results indicate a sample size of 2215.

Figure 31: Unequal sample sizes.

5.9.1.4 Unequal sample sizes Occasionally it makes sense to use unequal
sample sizes. If for example, one treatment is more difficult or expensive than
another, it might make sense to increase the precision of the test by taking a
greater number of the least difficult treatment. Figure (31) shows a calculation
for such a case, where the larger sample is to be three times the smaller. As
may be seen, 3 has been inserted in the r field.
The result is a total sample size of 300, and 300/(r + 1) = 75 should be

allocated to one treatment and 225 to the other.
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5.9.2 LDI for proportions

Fleiss (1981) offers some guidance in choosing an LDI when comparing propor-
tions, which I take as a model to illustrate the sort of thinking that may be
used in making the choice. Fleiss discusses two situations: (1) comparison with
a control, and (2) replication of a result.

5.9.2.1 Comparison with a control Suppose that P1 is the rate of success
for a standard treatment, and a new treatment is to be tested. What should
be the goal for the new treatment’s proportion, P2? Surely the new treatment
must do as well as the standard, plus it should impact the proportion of failures
of the standard treatment in order to be considered an improvement. Suppose
it is determined that it is economically or otherwise advantageous to succeed in
a fraction F of these failures, then since (1−P1) is the failure rate of the current
treatment, it follows that P2 should be set to P1 + F (1 − P1), and the sample
size calculated for these two proportions, P1 and P2.

Example: consider the situation where mothers who attend a hospital clinic
experience 100P1 = 25% premature births. A visiting nurse program is
proposed, but its expense is such that it can be justified only if it will
make a 20% improvement. Thus P2 = P1 + 0.20 × (1 − P1) = 0.35. The
sample size for a one sided test at 5% with power of 0.80 is 557, which
is likely too large to be practical. Changing from 20% to 40% brings the
sample size down to 77, but it is unlikely that this great an improvement
due to visiting nurses is possible. Clearly the project as proposed is not
feasible, and something else should be attempted. Perhaps attention could
be switched from a visiting nurse program to community education with
the aim of attracting mothers to the clinic.

5.9.2.2 Replication of a result An odds ratio is the ratio of the odds
for two treatments14, and it may be useful to verify this ratio under different
circumstances. The actual rates for the two treatments may be different, but it
often happens that the relative odds (i.e. the odds ratio) remain the same. For
example the chance that a pedestrian is hit by an auto may be higher in a city
than in a village, but the relative odds between jaywalking and non-jaywalking
situations may be the same. Thus a study done in one population may produce
the same treatment vs non-treatment odds ratio as that done in a different
population with different base rates.
Odds are calculated by dividing a proportion by its compliment. Thus if

something occurs 1/3 of the time the odds are 1/3
2/3 or 1 to 2. It follows that if

the ratio of two odds is R and if the control proportion in the new population
is P1 with odds O = P1/(1 − P1), then the treatment proportion P2 in the
new population may be found by solving R = O/[P2/(1 − P2)], which gives
P2 = O/(R+O).

14The log of the odds ratio is the logit.

41



Example: Suppose that a survey of data in New England shows that the odds
ratio between children who complete high school and those from one-
parent families who complete high school to be R = 2. A researcher in
the Midwest finds that the proportion of students who compel high school
in the local community is P1 = 0.8, and from this calculates the odds
as O = 4 and then finds P2 = 4/(2 + 4) = 0.67. The research may be
replicated with a sample size in the neighborhood of 400.

5.9.3 Calculations assuming the Poisson distribution

Figure 32: Poisson for a linear model.

5.9.3.1 Poisson A Poisson process is one of the most fascinating processes.
The Poisson distribution describes one part of it and represents the count of
events per unit exposure, such as the number of radioactive counts per unit
time or the number of particles in a unit volume, or, interestingly enough, the
number of wars engaged in by a country in a given time, Richardson (1942).
Such counts may occur at different rates, λ, and it is usually this parameter on
which interest focuses. For example, “did Great Britain have a greater war rate
in its heyday than the U.S. does now?”
Wars might be modeled in terms of various factors, say exchange rate, in-

dustrial capacity, length of orations in congress or parliament, etc. The model
might look like λ = t exp (µ0 + µ1x1 + . . .), where t is in units of exposure such
as time, and the x’s are independent variables.

LDI’s for the Poisson, like other non-normal distributions, vary across the
scale, and require two values to define the LDI on the transformed scale. The
square root transformation is used: that is the value x is transformed to

√
x.

Figure (32) shows an example, where the LDI is defined by two Poisson λ’s
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with L1 = 1 and L2 = 1.3. Means may be input instead of λ’s, since a Poisson
mean is simply λt, where t is in units of exposure. In actuality only the ratio
of the two values is of importance: the same sample size will be obtained for
L1 = 5, L1 = 6.5 and for L1 = 1, L1 = 1.3. Note that there is no EffectsDF
field available to specify the number of terms in the model15.
One may switch to the Poisson to perform any of the available sample size

calculations, and may analyze the results using ANOVA, regression, or any other
appropriate technique, after first transforming the observations to a normal
scale. One may also use a generalized linear model procedure with the log link
which is appropriate for a Poisson — this procedure is available in ECHIP.
Signorini (1991) provides asymptotic results which apply only to large sam-

ples. He also assumes the independent variables to be random, which requires
the researcher to be specific about their distribution. His results depend very
heavily on this specification.

Figure 33: Poisson for two samples.

5.9.3.2 Calculations for two samples: In many situations, there is only
one variable under investigation, and that one has only two levels, which is to
say that is there are two λ’s to be compared. The sample size may be found in
the context of a linear model simply by setting up a single factor at two levels.
Like the binomial, this problem has a considerable literature since it is very
common and very important.
There are several possible tests, since a Poisson process has several facets.

These are described by Birnbaum (1954), and several are implemented by Gail
(1974). The one most consistent with the linear model above involves observing
a Poisson process until a fixed count total is reached.

15The number of terms impacts a linear model primarily through the number of degrees of
freedom available to estimate σ, but there is no σ to estimate for a non-normal model
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For example, if one desires to detect a ratio of λ’s of 1.3, one might calculate
as in Figure (33), where it is seen that a total of 500 counts are needed. The
experiment would consist of observing two processes until a total of 500 counts
were obtained. Nelson (1987) describes the appropriate analysis of the data.
The sample size is calculated using the approximate formula given by Gail

(1974). It differs from the result of an exact calculation only due the rounding
of the size and power probabilities, and thus for large ratios of λ’s may differ by
a few counts from the exact values.

Example: Signorini (1991) gives an example in which the ratio of the λ’s is
1.3. For α = 0.05 and power = 0.90, his calculation results in a sample
size of 555 when he assumes that the independent variable is binomial
distributed with binomial probability 0.5. This is in reasonable agreement
with Figure (33).

5.9.4 Calculations for the χ2 variance

Figure 34: Variance calculation.

5.9.4.1 Variances Sample variances from normally distributed data are dis-
tributed like σ2χ2/df with df equal to one minus the number of observations on
which the sample variance is calculated. Like other non-normal distributions
the LDI varies across the scale, and two values are required to define the LDI
on the transformed scale. The transformation used is due to Wilson and Hil-
ferty (1931): for a value x, with ν degrees of freedom, the transformation is

9ν
2 (xν )

1/3 − 1 + 2
9ν . Population variances should be input in the V1 and

V2 fields to define the LDI.
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Example: Suppose, for example, a manufacturer has two plants, and three
production lines in each, and suppose that it is important to ensure that
the variability of the product from both plants and all lines does not differ
by more than 2 to 1. Figure (34) illustrates the calculation. It may be
seen that estimates of variance based on about 40 df from each of the six
lines will be able to detect a LDI corresponding to a 2 to 1 ratio. The
estimates may be obtained in any way such that their total df adds up to
40 for each of the 6 lines: that is 10 estimates with 4 df each may be used
or one with 40 df.

One may switch to the χ2 variance to perform any of the available sample
size calculations, and may analyze the results using ANOVA, regression, or
any other appropriate technique, after first transforming the observations to a
normal scale. One may also use a generalized linear model — this procedure is
available in ECHIP.

Figure 35: Two-hour vs. once-a-day

5.9.4.2 Calculations for two samples As with the binomial and Poisson,
the two sample situation is of most interest. In addition, such two sample sit-
uations often involve unequal sample sizes because the two samples frequently
come from different strata. A split-plot experiment, for example, has an error
associated with the variation among the whole plots, and one within the plots.
Repeated measurements experiments are similar in that the variation from mea-
surement to measurement within an individual is different than that between
individuals. If the variances for different strata in such designs are to be com-
pared, sampling will naturally produce more data from the second strata than
the first.

Note: The calculation assumes that the larger sample size is always associ-
ated with the smaller variance.
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Note: The power calculation is always exact. Hence the power may change
when the power checkbox is clicked if the sample size was calculated approxi-
mately.

Example: As an example, suppose that the variance in systolic blood pressure
measured at two hour intervals were be compared with the same mea-
surement taken once-a-day. In this case there would be more two-hour
measurements than once-a-day measurements. Suppose 5 two hour mea-
surements are made producing 4 df each day. There will thus be a 4 times
as many two-hour as once-a-day degrees of freedom, and the sample sizes
will be in a ratio of 4 to 1. The value 4 should be input in the r field of
the program.

It is usually argued in such situations that the once-a-day measurements
should be more variable than the two-hour measurements, because they
are subject to all the sources of variation of the two-hour measurements
plus others that occur between days. Suppose that it is desired to detect
a 2 to 1 ratio between the two variances.

Figure (35) shows an appropriate sample size calculation for detecting a 2
to 1 ratio of population variances. The approximate calculation indicates
that some 73 df are required. An exact calculation shows 91 instead of
73. This is the total degrees of freedom required, and it should be split
in a 4 to 1 ratio. The smaller sample size is associated with the once-
a-day measurements and will require about 19 days (18 df). The total
experiment will need 5× 19 = 95 measurements over 19 days, with 5 two
hour measurements per day.

5.10 χ2 contingency tables and goodness of fit

This topic has an extensive literature, and about all that can be done in this
brief writeup is to give a few equations for evaluating the parameter τ needed
by the program.
A contingency table with r rows and c columns can arise in three experimen-

tal situations depending on whether the row or column sums are fixed or not —
see Section (5.10.6). The analysis does not depend on these situations, since it
is done conditionally on the row and column sums, but the power and sample
size do depend on the situation. For the limiting χ2 distribution, each situation
has an appropriate formulation.

5.10.1 Comparative trials

5.10.1.1 2x2 tables The most common situation is called a comparative
trial and has either the rows or the column sums fixed. The Fisher exact test for
a 2x2 contingency table may be viewed as a comparative trial. In this there are
two populations, and the null hypothesis is that both have a common occurrence
probability, α. The alternate hypothesis is that the two populations each have
a different occurrence probabilities, π1 and π2. A 2x2 table is constructed
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Table 3: Probabilities for a 2x2 table

Null Alternative
1/3 2/3 Q1 1/2 1/2 Q1
1/3 2/3 Q2 1/7 6/7 Q2

containing these probabilities. Assuming that the row sums are fixed, the null
table is illustrated on the left of Table (3), where α = 1/3. The alternate table
is as on the right of Table (3) with π1 = 1/2 and π2 = 1/7. The proportions of
the total sample that will be assigned to the two rows are indicated by Q1 and
Q2 with of course Q1 +Q2 = 1.
Figure (36) illustrates a sample size calculation for this case which results

in a total sample size of 73. The binomial calculation for Fisher’s exact test
produces a sample size of 79 for a two-sided test and thus the two calculations
are in reasonable agreement. The total sample would of course be divided
between the two rows according to Q1 and Q2. The degrees of freedom is 1.

Figure 36: Contingency Table calculation.

The calculation is made by inserting a value in the Tau field. The appropriate
equation for a 2x2 table with alternate hypotheses probabilities π1 and π2 is:

τ = Q1Q2
(π1 − π2)2
α(1− α) , (1)

It should be noted that α in this case is not equal to Q1π1+Q2π2, although
there is nothing to prevent this choice if desired. Such a choice reduces the
alternate specification to a single parameter, since πi = α± δ.
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For the illustration in Figure (36), the calculation is

τ =
1

2

1

2

(1/2− 1/7)2
1/3× 2/3 = 0.1435,

with Q1 = Q2 = 1/2.
Sample size calculations for 2x2 tables are relatively straightforward, in that

the alternates are fairly clear cut. Things become complicated when there are
more rows or columns since the choice of alternate hypotheses is vast.

5.10.1.2 2xc tables For the general 2xc table, τ is given by

τ = Q1Q2


j

(π1j − π2j)2/αj
 , (2)

where the π1j and π2j are the parameters for the jth column and αj = Q1π1j +
Q2π2j . It is important to note that the parameters in each row sum to unity;
that is, it is assumed that j πij = 1. The degrees of freedom is (c-1).

Example: Consider the 2x3 table given by Cohen (1988) on page 219. He gave
the alternative population probabilities as shown on the left of Table (4)
as an independence trail, where all the probabilities sum to unity, and the
null probabilities are completely specified for each entry as the product of
the corresponding marginals: e.g. the null for cell (1,1) is 0.6×0.45 = 0.27.
In the comparative trial on the right of this table, where the rows have been
rescaled to sum to unity, it is only assumed that the column probabilities
have some common value to be estimated from the data using the row
proportions 0.60 and 0.40. The value of τ is 0.1197 from Equation (2),
and the total sample size is 106. It is worth noting that Equation (2) is
algebraically identical to the calculation used by Cohen.

Table 4: Two parameter forms
Independence trail Comparative trial

Dem. Rep. Ind. marginal Dem. Rep. Ind. sum
Men .22 .35 .03 .60 .367 .583 .05 1.00
Women .23 .10 .07 .40 .575 .25 .175 1.00
marginal .45 .45 .10 1.00 α .45 .45 .10 1.00

5.10.1.3 rxc tables A general expression for rxc tables may be obtained by
representing the πij in terms of deviations from the null hypothesis column16

parameters αj. Define πij = αj + δij , then

16Columns and rows may be interchanged if desired.
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τ =
j

1

αj


i

Qiδ
2
ij −

i

Qiδij)

2
 , (3)

where the degrees of freedom is (r-1)(c-1).
Since the πij in each row sum to unity, the δij in each row must sum zero, but

the δij need not sum to zero in columns; however, if they do, then the second
term in equation (3) vanishes which considerably simplifies the expression:

τ =
j

1

αj i

Qiδ
2
ij . (4)

This last expression is very convenient, and should serve most needs. I find it
useful to choose the {δij} as elements of a suitably scaled contrast, which brings
the specification into line with contrasts for ANOVA as discussed in previous
sections.
The theoretical basis for these equations is due to Mitra (1958). Other

papers of interest are Meng (1966), and Lachin (1977). The equations above
are in the form given by Lachin.

Example: Example 8.14 in Moore and McCabe (1993) discusses a 3x3 table
relating smoking habits to socioeconomic status, SES. The rows classify
individuals according to their smoking experience as “current smokers,”
“former smokers,” and “never smoked.” The hypothesis of interest was
whether or not the proportions falling into these classes differed according
to SES. There were about twice as many “High” SES individuals available
as there were for either “Middle” or “Low” SES. The null hypothesis was
that the proportions for the three smoking classifications would be the
same. One possible form for the alternate hypotheses {δij} is shown in
Table (5).

Table 5: Alternate hypotheses δij for smoking habits study

Current Former Never Qi
High -0.2 0.2 0 1/2
Middle -0.1 0.1 0 1/4
Low 0 0 0 1/4
α 1/3 1/3 1/3

Using equation (3) gives τ = 0.04125, and from this a sample size of 374
for α = 0.05 and power = 0.9. The actual study used 356.

5.10.2 Double dichotomy

A second experimental situation of interest is the double dichotomy, where none
of the marginal totals is fixed. For the comparative trial {αi} represented the
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common column null hypothesis probability values. In a double dichotomy, one
also supposes that the rows have common probability values {βi} under the null
hypothesis. Defining deviations in terms of these by πij = αiβj + δij gives the
following expression for τ :

τ =
ij

δ2ij
αiβj

−
i

δ2i.
αi
−

j

δ2.j
βj
, (5)

where i δij = δ.j j δij = δi.and it is only assumed that ij δij = 0.

Example: Suppose that the probabilities are as on the left of Table (4), and
the row α’s as before, but that β1 = β2 = 0.50, then it will be found that
τ = 0.1551 instead of 0.1197, and 82 trials will suffice instead of the 106
cited previously.

5.10.3 McNemar’s test

Table 6: 2x2 Table for McNemar’s test

Observations Probabilities
0 1 total

0 n00 n01 n0. π100 π101
1 n10 n11 n1. π110 π111

total n.0 n.1 N

Mitra (1958) has shown how to calculate the power of McNemar’s test, which
is a binary crossover design. The formulation that maximizes the power assumes
that N indivuals are chosen and subjected to two treatments, one after the other.
If these are classified in a 2x2 table such as Table (6), then

τ =
(π110 − π101)2

2π0
, (6)

where π0ij = 1, and the null hypothesis is π001 = π010 = π0, with the super-

script 0 denoting the null and the superscript 1 the alternative. Note π0 is not
necessesarily equal the average of π101 and π

1
10

5.10.4 Multiway tables

There is little theory for tables more complex than rxc; however, since the
limiting distribution is χ2, I would be surprised if Rule 1 from Scheffé (1959)
would not apply. This rule states that the noncentrality parameter may be
obtained by replacing each observation by its expectation. Hence the following
should apply
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τ =
ω

(π1ω − π0ω)2
π0ω

, (7)

where ω is a set of indices, and the exponents 0 and 1 denote the null and
alternate hypotheses.

5.10.5 Goodness of fit

Given a set of counts, xi, i = 1, . . . ,N , and a corresponding set of probabilities,
π0i , i = 1, . . . ,N , the statistic

X2 = N
i

(xi/N − π0i )2
π0i

,

is distributed under certain conditions as a χ2 variate. When these conditions
are met, the limiting sample size may be calculated from a noncentral χ2 with
noncentrality parameter Nτ , where

τ =
i

(π1i − π0i )2
π0i

, (8)

with the {π1i } being a set of alternative probabilities. The conditions and results
may be found in many places, Kendall (1967) chapter 30 for example. The
probabilities {π0i } may be estimated, and the appropriate degrees of freedom
reduced by the number of estimates.
It should be obvious that Equation (8) is the same as Equation (4) used with

a single multilevel factor.
The most common use is when the {xi} represent counts falling into cells

specified by the values of a probability distribution with the probabilities rep-
resenting the portions of the distribution assigned to the cells. For example,
when the distribution is the normal, and its mean and standard deviation are
estimated from the data, then the appropriate degrees of freedom is N − 2.

5.10.6 Further comments

It is supposed that N observations {xij} following a multinomial distribution
with probabilities {πij} are arranged in a table with r rows and c columns. The
statistic

X2 =
ij

(xij −Nπij)2
Nπij

(9)

is calculated and used as a test statistic. As N →∞ this statistic is distributed
like χ2 with (r-1)(c-1) degrees of freedom. If there are s restrictions on the
probabilities, the degrees of freedom is reduced by s.

There are three distinct experimental situations which give rise to such an
rxc table: (1) the double dichotomy, DD, in which both the row and column
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sums are free; (2) the homogeneity or comparative trial, CT, in which either
the row or the column sums are fixed; and (3) the independence trial, IT, in
which both the row and column sums are fixed. This classification describes the
way in which the data occurs, not the analysis. The analysis is usually done
conditionally on fixed marginals, and the limiting distribution of X2 under the
null is χ2.

Situations in which an IT might actually arise are rare, and after the fact,
it is not easy to identify the experimental situation even when attention is
restricted to DD and CT. Kendall (1967) in example 33.4 illustrates the problem
by referring to a table given in example 33.1, reproduced here as Table (7).

Table 7: Effect of cholera inoculation

Not-attacked Attacked Totals
Inoculated 276 3 279
Not-inoculated 473 66 539
Totals 749 69 818

The comments about this are:

“The table in Example 33.1 above is certainly not of our last
type, with both sets of marginal frequencies fixed, but it is not clear,
without further information, which of the other types it belongs to.
Possibly 818 persons were examined and then classified into the 2x2
table. Alternatively, two samples of 279 inoculated and 539 not-
inoculated persons were separately examined and each classified into
“attacked” and “not-attacked.” It is also possible that two samples
of 69 attacked and 749 not-attacked persons were classified into “in-
oculated” and “not-inoculated.” There are thus three ways in which
the table might have been formed, one of the double-dichotomy type
and two of the homogeneity type. Reference to the actual process by
which the observations were collected would be necessary to resolve
the choice.”

Although the null distribution of X2 remains the same for these three ex-
perimental situations, the power curves for exact calculation do not because
each of the three gives rise to a different class of alternative hypotheses with a
different τ . See Harkness (1964) for the 2x2 exact case. For the limiting χ2, the
expectations are different, but sample size may be calculated following Mitra
(1958).

6 The General Calculation Module

To avoid needless repetition, I will assume that the Multiway Effects section has
been read. I will also assume a greater sophistication on the part of the reader.
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Figure 37: General Calculation Startup Screen.

Figure (37) shows the start up screen for this module. It differs in several
ways from the Multiway Effects start up screen, most notably in the presence of
the Nu1, Nu2 and Phi fields. The first two fields refer to the numerator and de-
nominator df (ν1 and ν2) of the F-distribution, and the last to the usually tabled
function of the noncentrality parameter, λ2 of the noncentral F-distribution: i.e.
λ2 = φ2(ν1 + 1).
In the Multiway Effects Module, ν1 was calculated from the levels fields, and

ν2 by iteration from N − df , where N is the total sample size and df the model
degrees of freedom (EffectsDF + 1).
The Power, Scheff, and Tukey kernels are available from the menu, as they

were in the Multiway Effects Module; however, there are no menu item for
Cohen’s f nor for special contrasts. These are both available by direct input as
will be described. The same distributions are present from the drop down list,
except for χ2 contingency tables, which are completely treated in the Multiway
Effects Module.
To adjust for one sided tests, insert 2α in the Alpha field.

6.1 General calculation

The calculation is controlled by the value in the c field. The total sample size
N is given by N = ((cλσ)/∆)2, where ∆ is the parametric function value to
be detected. If for example, ∆ is the standard deviation of a set of parameters
(Cohan’s f), then c = 1 and σ = 1. If ∆ is the detectable value for a linear

functional ψ then (cσ)2/N is the variance of ψ̂. For example, suppose ψ = wµ
is a linear functional of the π dimensional parameter vector µ, then c2 = w wπ.

Example 1: Consider a 3x42 factorial experiment where there are three fertil-
izer compounds to be tested on in a 4x4 plot area, and suppose one wants
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Figure 38: Example1.

to detect a difference in yield of 5 bushels between the middle fertilizer
and the others. The contrast of interest is thus w=[-1,2,-1], from which
one has c =

√
6 · 3 = √18 ≈ 4.24. If interactions are not thought impor-

tant, then the model has 8 df, and thus ν1 = 2 and ν2=39, which gives
the calculation shown in Figure (38) when σ is guessed to be 4 bushels.

This result of 117 trials differs from that which would have been obtained
from the Multiway Effects calculation because of the definition of ∆. In
general ∆ is equal to the LDI only when the contrast is a difference of
two values, such as [-1,0,1]. For this contrast, c = 2.45 which produces
N = 39 in agreement with the Multiway Effects calculation. Appendix A
explains the translation from LDI to ∆. Some care is needed in setting
up a calculation. If for example, the contrast w=[-1/2,1,-1/2] had been
chosen the sample size would have been 29; yet both contrast the middle
fertilizer with the others. Whereas the Multiway Effects Module scales
everything to a common LDI, the General Calculation leaves this up to
the user; and in this case, changing the contrast changed the meaning of
∆ by a factor of two!

Example 2: Consider the same example, but using Cohen’s f with a “medium”
value of 0.25. Figure (39) shows the calculation. The result is 162 trials,
but frankly, I do not know that this means, nor what is really being
calculated here in terms of the problem.

6.2 The Phi field

For the power kernel, this field shows φ, where λ2 = φ2(ν1+1) is the noncentral-
ity parameter of the F-distribution. The asterisk that appears beside the field
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Figure 39: Example 2 using Cohen’s f.

Figure 40: Exact calculation
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indicates that the value is an approximation. The approximation is generally
good, and is used in order to make it possible to change on-screen values easily;
however, an exact calculation may be obtained by clicking the Exact button in
the lower left hand corner of the screen. Figure (40) shows the result. A fairly
difficult numerical series is evaluated to obtain the exact result, which may on
occasion converge slowly. When this happens, the asterisk will reappear after
the calculation. There will be no practical effect on the resulting sample size
when this happens. Checks on the accuracy of the calculation may be made by
comparing the results with graphs in Odeh and Fox (1975).
For non-normal distributions, λ2 = φ2(ν1+1) is the noncentrality parameter

of the noncentral χ2 distribution, and its accuracy may be checked by comparing
the results with the tables in Pearson and Hartley (1972).
For the Scheffé and Tukey kernels, φ is defined as a function of a percentage

point of a distribution. See Appendix C for details.

6.3 Non-normal distributions

The calculations remain the same as for the normal, except that∆ is now defined
by two values. These are transformed by a normalizing transformation and the
difference of the transformed values used to define ∆ on the transformed scale.
The meaning of the c field is unchanged.
The transformations used are:

1. binomial: (2 arcsin
√
p), for proportion p.

2. Poisson:
√
x, for value x.

3. χ2 variance: 9ν
2 (xν )

1/3 − 1 + 2
9ν , for a value x with ν the degrees

of freedom: due to Wilson and Hilferty (1931).

A LDI for arbitrary linear functions

Let t be a vector of parameters, and c’t a linear function with vector c, then
c(c’t/c’c) is that part of t ascribed to the function. If ρ is the range of the
elements of c, then ρ(|c t|/c c) is the range of the contribution of t made by the
function, and if ∆ is the detectable value for the function, then LDI is given
by ρ∆/c c. For c’=[1,-2,1], one has ρ=3, and c’c=6, hence LDI=∆/2. For
c’=[1/3,1/2,-5/6], one has ρ=8/6, and c’c=19/18, hence LDI=24∆/19.

B Post Hoc, observed power, and other misuses.

Such procedures attempt to assess the quality of a study a posteriori17. As an
academic exercise, this may be of interest, but there seems to be considerable

17Which is, I would have thought better Latin than post hoc
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confusion about it, with some attempting to use it to weight the evidence about
the null hypothesis. There is no logical basis for this.
There is nothing to prevent running the calculations in reverse — that is

by starting with the sample size and solving for power. It can be interesting,
and the ECHIP power calculator makes it possible. However, it should not be
substituted for an examination of the resolution bounds involved. The statistical
difficulty with reversing the calculations is that one cannot assess the statistical
errors involved, nor indeed easily state what is being estimated, if anything is.
Contrast this with a resolution bound which is a clearly defined entity from a
statistical and probabilistic viewpoint. It is a confidence limit on an estimate.

The post hoc procedure has been used in survey papers such as Cohen(1962)
where it can provide an assessment of the adequacy of sample sizes as used in
a particular area of study. This can be legitimate.
There are two large problems with a posteriori power procedures. First

of all, it is an improper calculation of a probability. Power is of course, the
probability that the alternate hypothesis will be correctly judged to occur when
it is true. The value of this probability changes upon collection of the data, and
the probabilities before and after the data are not necessarily equal. Zumbo and
Bruno (1998) illustrate this for a simple case in which the probabilities before
and after the data are 0.483 and 0.935 respectively. If, as most a posteriori
users do, the usual power formulas had been used after taking the data and,
upon finding a significant result, judging the alternate to be true, the user would
mistakenly have assessed the probability of the alternate hypothesis to be 0.483,
rather than the correct value of 0.935.
Secondly, it can not be used to add something to the interpretation of the

results, such as an assessment of the likelihood of the null. This is in fact what
is attempted by those who calculate observed power, where the observed values
are fed into a reversed power calculation, and the size of the resulting power is
used as evidence of the adequacy of the study. In point of fact, the observed
power is completely determined by the observed “p value:” Hoenig and Heisey
(2001). It follows that those who perform such observed power calculations will
inevitably find that the power is low.
It is true that some scales in the social sciences are difficult, but it is on these

scales that results must be judged. I suspect the difficulty with these scales is
confounded by apparently scale free quality of Cohen’s f and by the use of ∆/σ
without attempting to separate the two parts.

C Alternates to Power for sample size selection.

I assume a statistical background in this section.

The idea of the power of a statistical test was developed by Neyman-Pearson
(1933), and is the usual approach to the selection of sample size. The theory
postulates two hypotheses and treats errors that may be made with respect to
both. The base or null hypothesis is a straw man set up in the hope of rejection.
The alternative is concluded when the null is rejected. This bifurcation imposes
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a clear direction to the problem, and requires some precision in the specification
of the alternative, which is sometimes a difficulty. For example, the null hy-
pothesis that the next time my office door opens, a man will enter, suggests as
an alternate, the hypothesis that a woman will enter; however, it may happen
that the wind opens the door, or my dog comes in.
Fisher(1959) and others have voiced objections to such formal specifications,

but seem to have offered little guidance with respect to choosing sample size.
Fisher did not feel it necessary to consider alternative hypotheses in a statistical
test, and argued for the scientific merits of simply rejecting hypotheses when
not sufficiently supported by evidence. His influence, and the difficulty often
found in specifying alternate hypotheses has led may researchers to concentrate
on significance levels (p values) as the single figure of scientific merit, which has
the unfortunate consequence that some researchers accept the failure to reject
as proof of the null hypothesis, when it is really a Scotch verdict. Cohen(1988)
rightly criticizes this attitude.
Cohen therefore adopts the Neyman-Pearson rubric, and places power in

the forefront. It is not completely clear that this is the best approach, since it
forces on all experimenters the need to be precise about alternate hypothesis,
and even to manufacture them in order to use the theory. Consider, for example
a calibration problem, or one in which the goal is to establish the reasonable
equivalence of two products or treatments, such as a generic drug. In such
cases, the alternative is the straw man, and the goal is in fact to try to prove
the null hypothesis! Much legitimate research is directed toward establishing the
reasonable validity for a null hypothesis, and this may be part of the difficulty
in the studies criticized in surveys for lack of power.
In an attempt to accommodate this idea, I offer an alternative calculation

based on choosing sample sizes to control resolution bounds (i.e. the size of con-
fidence limits). This forces the focus away from a concentration on alternative
hypotheses and the balance between test size and power, to that of precision
in the measurement. In fact, the calculation does not depend on the test size,
although the equivalent of power is present. The fact that the test size does not
enter into the calculation does not mean that properties of the test are unim-
portant, but only that they are not paramount, and that the precision of the
test must go along for the ride, so to speak, instead of doing the driving.
Jason Hsu (1966) calculates sample sizes which control both the interval and

the probability that it covers the parameter. There is merit in this, as Westlake
(1979) indicates. However, because of the calculational burden that would be
imposed on the Palm device due to the extra integration, I chose to control only
the width.
With this in mind, the calculational formulas are the same as those for the

power calculation, except that the noncentrality parameter is replaced by a
percentage point from a distribution, which controls the width of the confidence
intervals that will be calculated a posteriori. I will now briefly outline the details.
Formula (3.1) in Wheeler(1974) gives the basic formula for power calcula-

tion. Consider a linear functional ψ = c µ, where µ is a vector of estimable
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parameters. Let ψ̂ be the least squares estimate with variance σ2
ψ̂
= c cπσ2/N

with π and σ being scalars and N the sample size. Formula (3.1) is λ = ∆/σψ̂
where λ2 is the noncentrality parameter of the noncentral F distribution with ν1
and ν2 degrees of freedom, and ∆ is the detectable value for ψ: that is the least
absolute value of ψ that will be significant with at least the power specified.
The formula may be rewritten as

N = πλ2c c(σ/∆)2. (10)

To relate ∆ to the LDI, it is useful to define an effect as the contribution a
functional makes to the response. If one considers the vector of parameters µ
to be in a space spanned by a set of orthogonal vectors, the first of which is c,
then with ρ the range of the elements of c, ρ|ψ|/c c represents the magnitude of
the change in µ due to ψ. In general µ will be a subset of the observations such
as the cells in an interaction, hence an effect eψ will be defined as ρψ/c c. The
quantity γ = ρ∆/c c will thus be a parametric value corresponding to the LDI.

Substituting c cγ/ρ for ∆ and taking θ = c c/ρ2 gives the following version
of equation (10) as the sample size formula based on power:

N = πλ2σ2/γ2θ. (11)

For a representation involving a confidence interval based on the F distri-
bution, let êψ = ρψ̂/c c be an estimated effect with variance v(ê) = πσ2/θN .

The width of a 1− β size S-method confidence interval for ê is 2S v(ê), where
S2 = (ν1Fβ/2;ν1,ν2) — see Scheffé(1959). Equating γ to the width of the confi-
dence interval, gives γ2 = 4S2πσ2/θN , or

N = π4S2σ2/γ2θ, (12)

as the formula based on a confidence interval. Thus the noncentrality parameter
λ2 is replaced by 4S2.
One may do exactly the same sort of thing for any method of constructing

confidence intervals. One very attractive method is Tukey’s method, described
in Scheffé (1959). For this one has

N = πq2ξ2σ2/γ2θ, (13)

where q ≡ q1−β,ν1,ν2 is the 100(1−β) percentage point of the Studentized range
and ξ = |ci|/√ρ.

Only the central part of these equations changes, and since it is common to
table φ rather than λ2, where λ2 = φ2(ν1 + 1), let us call φ the power kernel,
and define the corresponding kernels for other methods with respect to it. This
gives 2S/

√
ν1 + 1 as the Scheffé kernel qξ/

√
ν1 + 1 for the Tukey kernel.

Table (1) compares a few values of the power and Scheffé kernels, and Table
(2) compares sample sizes for a 3 level factor and a 10 level factor using con-
trast [−1 . . . 1]. Because σ, γ, and θ appear in all equations, changes in these
parameters will not effect the relative sample sizes. The ratio of sample sizes
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between Tukey and the others will change with the contrast however because of
ξ in equation (3).

α β ν1 ν2 power Scheffé
0.05 0.10 1 20 2.41 2.95
0.05 0.10 10 5 2.75 4.15
0.05 0.30 1 20 1.85 1.35
0.05 0.30 10 5 2.14 2.32
0.01 0.10 1 20 2.98 2.95
0.01 0.10 10 5 4.06 4.15
0.01 0.30 1 20 2.39 1.35
0.01 0.30 10 5 3.75 2.32

Table 8: A comparison of the power and Scheffé kernels.

3 level 10 level
α β power Scheffé Tukey power Scheffé Tukey

0.05 0.10 79 112 103 405 1178 677
0.01 0.10 109 112 103 533 1178 677
0.05 0.30 50 59 45 266 854 795
0.01 0.30 74 59 45 376 854 795

Table 9: A comparison of sample sizes for γ/σ = 1

Although it is arguable whether or not one should equate power to the
confidence coefficient, when this is done, it may be seen from Table (2) that the
sample sizes for power seem to be smaller in general.

D Numerical methods

D.1 Probability distributions

The probability distributions are obtained as follows:

1. The function φ is evaluated by using polynomial approximations for the
noncentral distributions and by using more exact series and continued
fraction evaluations. The Laguerre series form of the noncentral F given by
Tiku (1965) is used. The series and its derivative are used with Newton’s
method to evaluate the noncentrality parameter. The noncentral χ2 is
obtained from this by setting ν2 to a large value.

2. The incomplete beta function probabilities and hence the F and t proba-
bilities are obtained by use of Abramowitz and Stegun (1970) 26.5.8
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3. The inverse of the incomplete beta function and hence the F and t per-
centage points are obtained by using Newton iterations with Eq 26.5.22
from Abamaowitz and Stegun (1970) as an initial approximation. The
iterations are with respect to log(x) to avoid problems at the lower limit.

4. The natural logarithm of the gamma function is obtained from CACM
291 due to M.C. Pike and I.D. Hill.

5. The gamma and hence χ2 probabilities are calculated using Eq XXVIII on
page XV of Pearson (1957) when x < 1 or x < ν otherwise EQ 6.5.31 from
Abramowitz and Stegun is used. In addition EQ 6.5.13 from Abramowitz
and Stegun is used when ν is an integer.

6. The inverse of the gamma and hence χ2 is obtained by Newtonian it-
erations with respect to log(x) to avoid problems at the lower limit of
integration. The initial approximation is Eq 26.4.17 from Abramowitz
and Stegun.

7. The inverse of the normal integral uses CACM 442 due to G.W. Hill and
A.W. Davis.

8. The normal integral uses Abramowitz and Stegun (1970) 26.2.15 for |x| <
3.1 and otherwise uses 26.2.14.

9. The Studentized range calculation uses numerical integration for exact re-
sults; however, this seems to rarely improve the approximate results which
are made using an idea from Patnaik (1950) with the help of moments of
the Studentized range from Harter (1969).

D.2 Transformations

1. binomial: (2 arcsin
√
p), for proportion p.

2. Poisson:
√
x, for value x.

3. χ2 variance: 9ν
2
(x
ν
)1/3 − 1 + 2

9ν
, for a value x with ν the degrees

of freedom: due to Wilson and Hilferty (1931).

D.3 Approximate two population sample size formulas

Because the binomial and Poisson are discrete, it is not possible to obtain critical
regions of precisely the specified sizes without the use of randomization. As a
consequence no attempt was made to make more exact calculations, and sample
size tables will need to be consulted if this is an issue. It should be noted, as Gale
(1974) points out, that these approximate formulas cannot be much improved
since their major error is with respect to the precise size of the critical region.
The χ2 variance, being continuous, is of course calculated precisely when the
exact key is pressed.
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1. binomial:

N =
m (r + 1)

4r
1 + 1 +

2(r + 1)

m δ

2

,

where

m =
[zα (r + 1)P̄ Q̄+ zβ

√
rP1Q1 + P2Q2]

2

δ2
,

with P̄ = (P1 + rP2)/(r + 1) and Q̄ = 1 − P̄ , zα and zβ are the upper
percentage points of the standard normal distribution, δ = P2 − P1 with
P2 > P1 for the two proportions, and N the total sample size which is
(r+1) times the size of the smaller sample size. This is from Fleiss (1980).

2. Poisson:

N =
(zα + zβ)

2

4(sin−1 ρ/(1 + ρ)− sin−1 1/2)2
,

where zα and zβ are the upper percentage points of the standard normal
distribution, and ρ is the ratio of Poisson rates. This is from Gail (1974).

3. χ2 variance:

N = (r + 1)
(zα/
√
r + zβ)2

∆2
,

where N is the total sample size, r the ratio of sample sizes, zα and
zβ the upper percentage points of the standard normal distribution, and

∆ = 9/2(ρ1/3 − 1), with ρ the ratio of sample variances.
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