
Tapwave TwGfx Graphics API Reference

Tapwave® TwGfx Graphics API Reference
Version 1.1a

Tapwave TwGfx Graphics API Reference

2

Copyright

© Copyright 2003-2004 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. The Palm logo, HotSync,
Palm OS, Palm, Palm Powered, and the Palm Powered logo are registered trademarks of PalmSource, Inc., and its affiliates. X-Forge is a
trademark of Fathammer, Ltd. Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft
Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

Tapwave TwGfx Graphics API Reference

3

1.Background
To use the TwGfx library your application must include TwGfx.h, which is automatically included
by Tapwave.h. The Tapwave ROM restricts access to the TwGfx API to only those applications
that have been digitally signed. See the Digital Rights Management document for more information
about signing your application.

You must open the library with TwGfxOpen before calling any other functions, and you must call
TwGfxClose before your application exits. You can call TwGfxOpen as many times as desired, but
you must pair each request with a matching TwGfxClose.

The library provides facilities for the allocation and manipulation of surfaces. Surfaces are
rectangular regions of memory associated with the graphics accelerator. In addition to basic
rendering operations (points, lines, rectangles) there are a large set of bit blt operations used to
perform surface to surface copy operations. Note that bit blt operations that use the same surface
for both the source and destination will yield undefined results in the overlapping area.

The library provides access to the Palm display surface (the surface used to refresh the TFT display)
via the TwGfxGetPalmDisplaySurface API. This surface object remains consistent with the size,
shape, location and orientation of the application drawing area, which excludes the Pen Input and
Status areas. The Palm display surface size, shape, location and orientation are controlled by the
PINSetInputAreaState, StatShow, StatHide and SysSetOrientation API’s (see
PenInputMgr.h for more information). In addition, calls to WinScreenLock are also tracked by
the Palm display surface – rendering shifts to an offscreen surface during a lock operation, and is
automatically blt’d to the onscreen surface when the lock ends.

Surface memory can be accessed directly by the CPU. However, this access is not as efficient as
accessing CPU memory. To increase performance, Tapwave provides several asynchronous
procedures for transferring data to/from a surface using background DMA. This allows the CPU to
continue executing during a transfer operation. When such a transfer is started (see
wGfxReadSurface

or wGfxWriteSurface

later in this document) the surface is considered busy. Any other attempt to use the surface will
fail, returning a twGfxErrorOperationInProgress error. To determine when a surface is no
longer busy use the TwGfxIsSurfaceReady procedure.

In addition to the asynchronous copy operation, there is also an asynchronous bit blt operation.
This is used to avoid waiting for a vertical blank before issuing a bitblt, thus freeing up the CPU to
perform other calculations. There can be at most one asynchronous bitblt going at any time, for all
instances of the library.

http://www.tapwave.com/developers/members/DRM/DRM_TOC.html

Tapwave TwGfx Graphics API Reference

4

2.Library data types
typedef struct TwGfxInfoType {
 /* requester MUST set this to sizeof (TwGfxInfoType) */
 Int32 size;

 Int32 displayWidth, displayHeight; /* current dimensions of display */
 Int32 displayRowBytes; /* byte width of entire row */
 Int32 displayPixelFormat; /* format of display */

 Int32 freeAcceleratorMemory; /* free accelerator memory */
 Int32 totalAcceleratorMemory; /* total accelerator memory */
} TwGfxInfoType;

/*
 * Surface information structure
 */
typedef struct TwGfxSurfaceInfoType {
 /* requester MUST set this to sizeof(TwGfxSurfaceInfoType) */
 Int32 size;

 Int32 width, height; /* dimensions */
 Int32 rowBytes; /* byte width of entire row */

 Int32 location; /* memory location of the surface */
 Int32 pixelFormat; /* format of the surface */
} TwGfxSurfaceInfoType;

/*
 * Bitmap structure
 */
typedef struct TwGfxBitmapType {
 /* requester MUST set this to sizeof(TwGfxBitmapType) */
 Int32 size;

 Int32 width, height; /* size of bitmap */
 Int32 rowBytes; /* bytes per row */
 Int32 pixelFormat; /* format of data */
 void* data; /* actual data */

 UInt16* displayPalette; /* In native display format */
 TwGfxPackedRGBType transparentColor;
} TwGfxBitmapType;

typedef struct TwGfxPointType {
 Int32 x, y;
} TwGfxPointType;

typedef struct TwGfxRectType {
 Int32 x, y, w, h;
} TwGfxRectType;

Tapwave TwGfx Graphics API Reference

5

typedef struct TwGfxSpanType {
 Int32 x, y, w;
} TwGfxSpanType;

Tapwave TwGfx Graphics API Reference

6

3.Library macros
The first set of macros convert colors between the various color formats supported by the library.
The format of all TwGfx surfaces is 16 bits per pixel (little endian) with an RGB value of 565. This
means that there are 5 bits of red, 6 bits of green and 5 bits of blue. In general, the API functions
do not define surface colors; the API is more generic (and upward compatible) because it accepts
colors in “packed component RGB” format, which are simply RGB 888 (8 bits per color component).

Also note that the color conversions from RGB 888 to RGB 565 use simple mask and shift operations.
No attempt is made to “round” or apply any other color policy to mitigate the difference in
accuracy between the two color types. It is the responsibility of the application to fine-tune the
conversion process.

/*
 * Macro to construct an rgb565 color from
 * three 8 bit components. This is a manually optimized version that
 * is consistent with the other color macros here.
 *
 * Note that the 68k version of this macro generates data that is
 * byte-swapped into little-endian format. This means that data passed
 * to TwGfxDrawBitmap and TwGfxWriteSurface will be properly arranged
 * if you use this macro.
 */
#define TwGfxMakeDisplayRGB_BigEndian(_r,_g,_b) \
 ((((_g) & 0xFC) << 11) | (((_b) & 0xF8) << 5) | \
 ((_r) & 0xF8) | (((_g) & 0xFF) >> 5))

#define TwGfxMakeDisplayRGB_LittleEndian(_r,_g,_b) \
 ((((_r) & 0xF8) << 8) | (((_g) & 0xFC) << 3) | (((_b) & 0xF8) >> 3))

#if CPU_TYPE == CPU_68K
#define TwGfxMakeDisplayRGB(_r,_g,_b) \
 TwGfxMakeDisplayRGB_BigEndian(_r,_g,_b)
#else
#define TwGfxMakeDisplayRGB(_r,_g,_b) \
 TwGfxMakeDisplayRGB_LittleEndian(_r,_g,_b)
#endif

/*
 * These macros take an 8-bit color component and adjust the
 * size to match the rgb565 display framebuffer
 */
#define TwGfxRComponentToDisplayComponent(_r) (((_r) & 0xF8) >> 3)
#define TwGfxGComponentToDisplayComponent(_g) (((_g) & 0xFC) >> 2)
#define TwGfxBComponentToDisplayComponent(_b) (((_b) & 0xF8) >> 3)

/*
 * This macro converts from packed component RGB to packed display RGB
 */
#define TwGfxPackedRGBToDisplayRGB(_rgb) \
 ((TwGfxRComponentToDisplayComponent((_rgb) >> 16) << twGfxRShift) | \

Tapwave TwGfx Graphics API Reference

7

 (TwGfxGComponentToDisplayComponent((_rgb) >> 8) << twGfxGShift) | \
 (TwGfxBComponentToDisplayComponent((_rgb)) << twGfxBShift))

/*
 * This macro converts a TwGfxRGBType structure to a
 * TwGfxPackedRGBType value.
 */
#define TwGfxRGBToPackedRGB(_rgb) \
 ((TwGfxPackedRGBType) (((_rgb).r << 16) | ((_rgb).g << 8) | (_rgb).b))

/*
 * This macro converts rgb components to a TwGfxPackedRGBType
 */
#define TwGfxComponentsToPackedRGB(_r,_g,_b) \
 ((TwGfxPackedRGBType) ((((_r) & 0xFF) << 16) | \
 (((_g) & 0xFF) << 8) | \
 ((_b) & 0xFF)))

The following convenience macros can be used to simplify and clarify code.

/*
 * This macro helps fill in a TwGfxPointType
 */
#define TwGfxMakePoint(_point, _x, _y) \
 ((_point).x = (_x), (_point).y = (_y))

/*
 * This macro helps fill in a TwGfxRectType
 */
#define TwGfxMakeRect(_rect, _x, _y, _w, _h) \
 ((_rect).x = (_x), (_rect).y = (_y), (_rect).w = (_w), (_rect).h = (_h))

Tapwave TwGfx Graphics API Reference

8

4.Library access functions

TwGfxOpen

Purpose Access the accelerated graphics library. You can call this function as
many times as desired. However, you must pair each TwGfxOpen with a
TwGfxClose to avoid resource leaks.

Prototype Err TwGfxOpen(TwGfxType** aResult,
 TwGfxInfoType* aInfoResult)

Parameter
s

[out] aResult Pointer to a handle to the graphics library. If
the request succeeds then *aResult is set
to a handle to the graphics library for use in
subsequent calls.

 [inout] aInfoResult Pointer to a TwGfxInfoType object which
is filled with a description of the capabilities
of the device and the graphics library. Note
that you must set the size field of
TwGfxInfoType to the size of the data
structure.

This argument can be NULL if no such data is
desired.

Result errNone – Succeeded

TwGfxErrorLibraryOpen – the library is already open

twGfxErrorBadObjectVersion – the TwGfxInfoType size field
doesn’t match a known version for the library

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

9

TwGfxClose

Purpose Shutdown use of the library, releasing all resources associated with the
library.

Prototype Err TwGfxClose(TwGfxType* aGfx)

Parameter
s

[in] aGfx A handle to the graphics library.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library was invalid

Side
Effects

This function releases all resources allocated by the library including any
surface objects that were created and not yet released. Note that only
the surfaces created using this instance of the TwGfx library are released.
Continuing to use the aGfx handle after calling close yields undefined
results (most likely a crash).

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

10

TwGfxGetInfo

Purpose Query the graphics library for information describing the capabilities of the
device and of the graphics library.

Prototype Err TwGfxGetInfo(TwGfxType* aGfx,
 TwGfxInfoType* aInfoResult)

Parameter
s

[in] aGfx A handle to the graphics library.

 [inout] aInfoResult Pointer to a TwGfxInfoType object which will
be filled in with a description of the capabilities
of the device and of the graphics library. The
size field of TwGfxInfoType must be set to the
size of the data structure.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aInfoResult pointer is NULL

twGfxErrorBadObjectVersion – the TwGfxInfoType size field doesn’t
match a known version for the library

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

11

TwGfxGetMemoryUsage

Purpose Query the current usage of graphics accelerator memory.

Prototype Err TwGfxGetMemoryUsage(TwGfxType* aGfx,
 Int32 aLocation,
 Int32* aUsedResult)

Parameter
s

[in] aGfx A handle to the graphics library.

 [in] aLocation Must be twGfxLocationAcceleratorMemory or
twGfxLocationAcceleratorMemoryNoBackingS
tore

 [out] aUsedResult Pointer to an integer that receives the usage value.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aUsedResult pointer is NULL

twGfxErrorInvalidLocation – the aLocation value is invalid

Comments This call returns the amount of accelerator memory used not the amount free as
is returned in the TwGfxInfoType object’s freeAcceleratorMemory field.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

12

TwGfxGetPalmDisplaySurface

Purpose Query the graphics library for the surface used for the Palm OS display. The
function returns the TwGfxSurfaceType handle that represents the actual
display.

Prototype Err TwGfxGetPalmDisplaySurface(TwGfxType* aGfx,
 TwGfxSurfaceType** aResult)

Parameter
s

[in] aGfx A handle to the graphics library.

 [out] aResult Pointer to a handle to a graphics surface that is filled in
when the request succeeds.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aResult pointer is NULL

Comments The Palm display surface represents the subset of the display surface used by the
Palm OS. It stays consistent with the size, shape, location, and orientation of the
Palm OS display, including the “back buffer” used by WinScreenLock.

Each instance of a library has its own unique reference to the Palm display
surface. This means that changing the surface clip for the Palm display surface in
one library handle will not affect it in a Palm display surface created from a
different library handle.

For example, if you open the TwGfx library twice, query the Palm display surface
for each library instance, and then compare the two surface handles, ityields
different values for the surface handles.

Use this function – Don’t use TwGfxGetDisplaySurface.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

13

TwGfxInVBlank

Purpose Query the graphics library and see whether or not the display is in the vertical
blanking period.

Prototype Err TwGfxInVBlank(TwGfxType* aGfx,
 Boolean* aInVBlankResult)

Parameter
s

[in] aGfx A handle to the graphics library.

 [out] aInVBlankResult Pointer to a Boolean value which indicates the
current state of the vertical blanking. The
value is true if the display is in vertical
blanking, false otherwise.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aInfoResult pointer is NULL

Comments See TwGfxAsyncBlt for a more efficient way to sync up with vertical
blanking.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

14

TwGfxWaitForVBlank

Purpose Wait for the vertical blanking period to begin. This function may return
immediately if the display is already in the vertical blanking period.

Prototype Err TwGfxWaitForVBlank(TwGfxType* aGfx)

Parameter
s

[in] aGfx A handle to the graphics library.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

Comments See TwGfxAsyncBlt for a more efficient way to sync up with vertical
blanking.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

15

TwGfxGetDisplaySurface

Purpose Query the graphics library for the entire display surface and return the
TwGfxSurfaceType handle that represents the actual display.

Prototype Err TwGfxGetDisplaySurface(TwGfxType* aGfx,
 TwGfxSurfaceType** aResult)

Parameter
s

[in] aGfx A handle to the graphics library.

 [out] aResult Pointer to a handle to a graphics surface that is
filled in when the request succeeds.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aResult pointer is NULL

Comments The display surface represents the entire display surface including the
Pen Input Area and Status Area.

Use TwGfxGetPalmDisplaySurface instead. It is nearly identical in
function to this API, and has the added benefit of keeping in sync with
the API’s that affect the size, shape, location, and orientation of the
Palm display surface.

If you must use this function, make sure to close the Pen Input Area
(PINS) using the PINSetInputAreaState API and the status area using
the StatHide. These functions are defined in PenInputMgr.h, and if
you lose focus, make sure to re-close Pen Input Area and Status Area
before you begin drawing again.

Each instance of a library has its own unique reference to the display
surface. This means that changing the surface clip for the display surface
in one library handle does not affect it in a display surface created from a
different library handle.

For example, if you open the TwGfx library twice, query the display
surface for each library instance, and then compare the two surface
handles, it yields different values for the surface handles.

Tapwave TwGfx Graphics API Reference

16

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

17

5.Surface functions

TwGfxAllocSurface

Purpose Attempt to allocate a new surface. Surfaces are used by the rendering
functions described below. Surfaces should be allocated in accelerator
memory.

Prototype Err TwGfxAllocSurface(TwGfxType* aGfx,
 TwGfxSurfaceType** aResult,
 TwGfxSurfaceInfoType* aDescription);

Parameter
s

[in] aGfx A handle to the graphics library.

 [out] aResult Pointer to a handle to a surface that is filled in
if the request succeeds.

 [inout] aDescription Pointer to a TwGfxSurfaceInfoType object.
This pointer must not be NULL and the size field
must be initialized to the size of the data
structure. In addition, you must set the width,
height, pixelFormat and location fields to the
values desired for creation of the surface. All
other fields are ignored.

Tapwave TwGfx Graphics API Reference

18

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorOutOfMemory – the library ran out of memory

twGfxErrorInvalidPixelFormat – the pixelFormat field is invalid

twGfxErrorInvalidLocation – the location field is invalid

twGfxErrorInvalidSize – the width/height fields are <= zero, or they are
too large.

twGfxErrorNullPointer – the aDescription pointer is NULL

twGfxErrorBadObjectVersion – the TwGfxSurfaceInfoType size field
doesn’t match a known version for the library

twGfxErrorSurfaceAllocFailed – the allocation failed (insufficient
device memory is the most likely reason).

Side
Effects

When the request succeeds, the fields in aDescription are filled in so that
the requester receives a complete description of the surface.

Comments Only the pixel format twGfxPixelFormatRGB565_LE can be used for
surface creation at this time.

There are currently two locations supported:

twGfxLocationAcceleratorMemory and
twGfxLocationAcceleratorMemoryNoBackingStore. The former
allocates dynamic heap memory to maintain a copy of the surface during
system sleep. The latter does not.

The surface width or height is limited to a maximum of 8191 pixels.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

19

TwGfxFreeSurface

Purpose Free a previously allocated surface.

Prototype Err TwGfxFreeSurface(TwGfxType* aGfx,
 TwGfxSurfaceType* aSurface)

Parameter
s

[in] aGfx A handle to the graphics library.

 [in] aSurface Handle to the surface that should be freed.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library or surface is
invalid

Comments If you free the display surface or the Palm surface and then call
TwGfxGetDisplaySurface or TwGfxGetPalmDisplaySurface
(respectively) the surface object will be automatically recreated. Note
that freeing the Palm or display surface will not free the video memory
associated with those surfaces.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

20

TwGfxSetClip

Purpose Set the clipping rectangle associated with the given surface. All rendering
requests are clipped by the surface clipping rectangle.

Prototype Err TwGfxSetClip(TwGfxSurfaceType* aSurface,
 const TwGfxRectType* aClipRect)

Parameter
s

[in] aSurface A handle to the surface.

 [in] aClipRect Pointer to the clipping rectangle. If aClipRect is
NULL then clipping is disabled for the surface (this
has the same effect as setting the clipping
rectangle to cover the entire surface).

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid

Comments The clipping rectangle for all surfaces automatically intersects with the
bounds of the actual clipping surface before it is applied. This is
important when considering the Palm display surface because its bounds
change dynamically. The clipping rectangle provided by this API remains
in effect, but it intersects with the actual bounds of the Palm surface as
it changes size, position and orientation.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

21

TwGfxGetClip

Purpose Get the clipping rectangle associated with a surface.

Prototype Err TwGfxGetClip(TwGfxSurfaceType* aSurface,
 TwGfxRectType* aResult)

Parameter
s

[in] aSurface A handle to the surface.

 [out] aClipRect Pointer to the rectangle object which will be
filled in with the surface clipping rectangle.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorNullPointer – the aClipRect pointer is NULL

Comments If the clipping for a surface is disabled (the default state for a surface)
then the fields in aClipRect will contain the size of the surface (0, 0,
width, height).

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

22

TwGfxGetSurfaceInfo

Purpose Query the surface information for a given surface.

Prototype Err TwGfxGetSurfaceInfo(TwGfxSurfaceType* aSurface,
 TwGfxSurfaceInfoType* aResult)

Parameter
s

[in] aSurface A handle to the surface.

 [inout] aResult A TwGfxSurfaceInfoType object that will be
filled in with the description of the surface. The
size field of aResult must be set to the size of
the data structure before calling this function.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorNullPointer – the aClipRect pointer is NULL

twGfxErrorBadObjectVersion – the TwGfxSurfaceInfoType size
field doesn’t match a known version for the library

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

23

TwGfxLockSurface

Purpose Return a memory address for the surfaces video memory.

Prototype Err TwGfxLockSurface(TwGfxSurfaceType* aSurface,
 void** aAddressResult)

Parameter
s

[in] aSurface A handle to the surface.

 [out] aAddressResult A pointer to a void pointer that will be
filled in with a readable/writable memory
address for the surface memory.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorNullPointer – the aAddressResult pointer is NULL

Comments The memory address returned remains valid until TwGfxUnlockSurface
is called. Note that you can nest these functions. When this occurs, the
same memory address is always returned and is valid until the matching
number of TwGfxUnlockSurface requests are made.

Use care when mixing direct access to the surface memory with surface
rendering operations. Surface rendering operations can execute in
parallel with the CPU’s access to the memory and yield unpredictable
results. To work around this issue, use TwGfxUnlockSurface to release
access to the surface followed by TwGfxLockSurface.
TwGfxLockSurface ensures that the rendering pipeline is empty before
returning a memory address.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

24

TwGfxUnlockSurface

Purpose Unlock a previously locked surface.

Prototype Err TwGfxUnlockSurface(TwGfxSurfaceType* aSurface,
 Boolean aUpdate)

Parameter
s

[in] aSurface A handle to the surface.

 [in] aUpdate This flag indicates to the graphics library that the
surface memory was modified by the requester. If
for some reason actual surface memory was not
returned by TwGfxLockSurface, it should be
copied to the actual surface memory.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorSurfaceNotLocked – the surface was not locked

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

25

TwGfxReadSurface

Purpose Make a copy of the surface display memory.

Prototype Err TwGfxReadSurface(TwGfxSurfaceType* aSurface,
 void* aDest,
 UInt8 aAsync)

Parameter
s

[in] aSurface A handle to the surface.

 [out] aDest A pointer to the memory where the surface memory
will be written. It is the requester’s responsibility to
allocate enough memory.

 [in] aAsync When set to twGfxTransferAsync this flag indicates
that the copy should be done asynchronously. Use
TwGfxSurfaceIsReady to query when the copy is
done.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the
library is not open

twGfxErrorNullPointer – the aDest pointer is NULL

twGfxErrorOperationInProgress – a TwGfxSurfaceRead or
TwGfxSurfaceWrite operation is already in progress

Comments This is identical to calling TwGfxReadSurfaceRegion with a bounding
rectangle that covers the entire surface.

To allocate enough memory for the copy, use TwGfxGetSurfaceInfo
and perform this calculation:

 Int32 bytesNeeded = info.rowBytes * info.height;

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

26

TwGfxReadSurfaceRegion

Purpose Make a copy of the surface display memory.

Prototype Err TwGfxReadSurfaceRegion(TwGfxSurfaceType* aSurface,
 const TwGfxRectType* aBounds,
 void* aDestPixels,
 Int32 aDestRowBytes,
 UInt8 aAsync)

Parameter
s

[in] aSurface A handle to the surface.

 [in] aBounds A pointer to the rectangle object which contains the
area of the surface to be written.

 [out]
aDestPixels

A pointer to the memory where the surface memory
will be written. It is the requester’s responsibility to
allocate enough memory.

 [in]
aDestRowBytes

The number of data bytes per row in aDestPixels.

 [in] aAsync When set to twGfxTransferAsync this flag indicates
that the copy should be asynchronous. Use
TwGfxSurfaceIsReady to query when the copy is
done.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the
library is not open

twGfxErrorNullPointer – the aDest pointer is NULL

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

27

TwGfxWriteSurface

Purpose Write a memory buffer to the surface display memory.

Prototype Err TwGfxWriteSurface(TwGfxSurfaceType* aSurface,
 const void* aSource,
 UInt8 aAsync)

Parameter
s

[in] aSurface A handle to the surface.

 [in] aSource A pointer to the memory to be copied to the surface
display memory.

 [in] aAsync When set to twGfxTransferAsync this flag indicates
that the copy should be asynchronous. Use
TwGfxIsSurfaceReady to query when the copy is
done.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorNullPointer – the aSource pointer is NULL

twGfxErrorOperationInProgress – an asynchronous operation is
already in progress

Comments See TwGfxReadSurface for an example of how to allocate enough memory
for the copy.

This function is the same as calling TwGfxWriteSurfaceRegion and
specifying a region that covers the entire surface with source row bytes
that are the same as the surface row bytes.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

28

TwGfxWriteSurfaceRegion

Purpose Write a memory buffer to a subset of the surface display memory.

Prototype Err TwGfxWriteSurfaceRegion(TwGfxSurfaceType* aSurface,
 const TwGfxRectType* aBounds,
 const void* aSourcePixels,
 Int32 aSourceRowBytes,
 Boolean aAsync)

Parameter
s

[in] aSurface A handle to the surface.

 [in] aBounds A pointer to the rectangle object which contains
the area of the surface to be written.

 [in] aSourcePixels A pointer to the memory to be copied to the
surface display memory.

 [in] aSourceRowBytes The number of bytes per row of data in
aSourcePixels.

 [in] aAsync When set to twGfxTransferAsync this flag
indicates that the copy should be asynchronous.
Use TwGfxIsSurfaceReady to query when the
copy is done.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the
library is not open

twGfxErrorNullPointer – the aSource pointer is NULL

twGfxErrorInvalidCoord – the coordinates in aDestRect are outside the
bounds of the surface or specify an empty area (zero width/height)

twGfxErrorOperationInProgress – a TwGfxSurfaceRead or
TwGfxSurfaceWrite operation is already in progress

Tapwave TwGfx Graphics API Reference

29

Comments The amount of memory necessary for the copy to work properly depends on the
pixel format of the surface and the height of the aDestRect and
aSourceRowBytes. For example, assuming 2 bytes per pixel, the following
calculation will be correct:

 totalBytes = aDestRect->h * aSourceRowBytes * 2;

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

30

TwGfxIsSurfaceReady

Purpose Query the surface and see if it is ready for another TwGfxSurfaceRead or
TwGfxSurfaceWrite request.

Prototype Err TwGfxIsSurfaceReady(TwGfxSurfaceType* aSurface)

Parameter
s

[in] aSurface A handle to the surface.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorOperationInProgress – a TwGfxSurfaceRead or
TwGfxSurfaceWrite operation is still in progress

Comments This function returns errNone when no operations are pending (and the
surface is a valid surface). If the arguments are valid and an operation is
pending, then it returns twGfxErrorOperationInProgress.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

31

6.Rendering functions
This section describes the rendering methods in the graphics library.

TwGfxBitBlt

Purpose Call a basic bitblt rendering function.

Prototype Err TwGfxBitblt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect)

Parameter
s

[in] aDestSurface A handle to the surface to which you want to
bitblt.

 [in] aDestPoint The upper-left coordinate in the destination
surface to which you want to bitblt.

 [in] aSourceSurface A handle to the surface from which you want to
bitblt.

 [in] aSourceRect The area in the source surface from which you
want to bitblt.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library
is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or
the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

32

TwGfxAsyncBlt

Purpose Call a basic bitblt rendering function, done asynchronously.

Prototype Err TwGfxAsyncblt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect)

Parameter
s

[in] aDestSurface A handle to the surface to which you want to
bitblt.

 [in] aDestPoint The upper-left coordinate in the destination
surface to which you want to bitblt.

 [in] aSourceSurface A handle to the surface from which you want to
bitblt.

 [in] aSourceRect The area in the source surface from which you
want to bitblt.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library
is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point
or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in
progress or another asynchronous bitblt has been requested

Comments This function is identical to TwGfxBitBlt except that the bitblt occurs during
the next vertical retrace period.

There can only one asynchronous bitblt request at a time.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

33

TwGfxTransparentBlt

Purpose Call a transparent bitblt rendering function.

Prototype Err TwGfxTransparentBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect,
 TwGfxPackedRGBType aTransparentColor)

Parameter
s

[in] aDestSurface A handle to the surface to which you want to
bitblt.

 [in] aDestPoint The upper-left coordinate in the destination
surface to which you want to bitblt.

 [in] aSourceSurface A handle to the surface from which you want to
bitblt.

 [in] aSourceRect The area in the source surface from which you
want to bitblt.

 [in] aTransparentColor The color which should not be rendered.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library
is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or
the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

Comments The source surface is bitblt’d to the destination surface like a regular bitblt with
one distinction: any pixel in the source surface whose color is identical to
aTransparentColor is not written to the destination surface.

Since aTransparentColor may have higher resolution than the actual display

Tapwave TwGfx Graphics API Reference

34

surface you may wish to use TwGfxMakeDisplayRGB and then convert that to
packed format with TwGfxDisplayRGBToPackedRGB.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

35

TwGfxMaskBlt

Purpose Call a mask bitblt rendering function.

Prototype Err TwGfxMaskBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect,
 const TwGfxBitmapType* aMask)

Parameter
s

[in] aDestSurface A handle to the surface to which you want to
bitblt.

 [in] aDestPoint The upper-left coordinate in the destination
surface to which you want to bitblt.

 [in] aSourceSurface A handle to the surface from which you want
to bitblt.

 [in] aSourceRect The area in the source surface from which you
want to bitblt.

 [in] aMask A monochrome bitmap that describes which
pixels to render and which to not render. The
width and the height of the mask must be >=
the width and height of the source rect.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point
or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

twGfxErrorInvalidSize – the mask bitmap width/height/rowbytes are too

Tapwave TwGfx Graphics API Reference

36

small.

Comments Only monochrome bitmaps can be used as masks. When a one bit is present in
the bitmap the source surface pixel will be written to the destination surface.
When a zero bit is present the destination pixel will remain unchanged.

The mask data rowbytes must be a multiple of sizeof(UInt32) and the mask
data must be aligned on a UInt32 boundary.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

37

TwGfxBlendBlt

Purpose Call a blending bitblt rendering function.

Prototype Err TwGfxBlendBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect,
 TwGfxPackedRGBType aSourceAlpha)

Parameter
s

[in] aDestSurface A handle to the surface to which you want
to bitblt.

 [in] aDestPoint The upper-left coordinate in the
destination surface to which you want
bitblt.

 [in] aSourceSurface A handle to the surface from which you
want to bitblt.

 [in] aSourceRect The area in the source surface from which
you want to bitblt.

 [in] aSourceAlpha The constant alpha color to use over the
entire surface

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination
point or the source rectangle address values outside their respective
surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Tapwave TwGfx Graphics API Reference

38

Comments The source surface is blended into the destination surface using the
following formula on a per pixel basis:

 dst.r = src.r * alpha.r + (1 – alpha.r) * dst.r
 dst.g = src.g * alpha.g + (1 – alpha.g) * dst.g

 dst.b = src.b * alpha.b + (1 – alpha.b) * dst.b

The alpha color componets are logically normalized to a 0.0 – 1.0 range
(inclusive) before the above calculation is done.

 The above formula can be translated to “As the alpha value increases
towards 1, more of the source pixel is used and less of the destination
pixel is used.”

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

39

TwGfxMaskBlendBlt

Purpose Call a blending bitblt rendering function.

Prototype Err TwGfxMaskBlendBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect,
 const TwGfxBitmapType* aAlphaMask)

Parameter
s

[in] aDestSurface A handle to the surface to which you want bitblt.

 [in] aDestPoint The upper-left coordinate in the destination surface
to which you want bitblt.

 [in] aSourceSurface A handle to the surface from which you want to
bitblt.

 [in] aSourceRect The area in the source surface from which you want
to bitblt.

 [in] aAlphaMask A bitmap containing per-pixel alpha values. The
width and the height of the mask must be >= the
width and height of the source rect.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is
not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or
the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

twGfxErrorInvalidSize – the alpha mask bitmap width/height/rowbytes are
too small.

Tapwave TwGfx Graphics API Reference

40

Comments The alpha mask bitmap provides a per-pixel alpha value to perform the blending
calculation with (see TwGfxBlendBlt for the blending calculation). The alpha
mask pixel format must be one of the index formats (monochrome, 2bpp, 4bpp or
8bpp) with the 4bpp being the most efficient choice (and the only supported
format at this time).

Each pixel of the source surface in the source rectangle is blended with the
destination pixel using the blending formula described in TwGfxBlendBlt. The
alpha color value is taken from the mask, which means that each pixel can have a
different alpha value applied to the calculation.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

41

TwGfxStretchBlt

Purpose Call a stretching bitblt rendering function.

Prototype Err TwGfxStretchBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxRectType* aDestRect,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect)

Err TwGfxStretchBlt2(TwGfxSurfaceType* aDestSurface,
 const TwGfxRectType* aDestRect,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect,
 UInt32 aStretchFlags)

Parameter
s

[in] aDestSurface A handle to the surface to which you want
bitblt.

 [in] aDestRect The area in the destination surface to which
you want bitblt.

 [in] aSourceSurface A handle to the surface from which you want
to bitblt.

 [in] aSourceRect The area in the source surface from which
you want to bitblt.

 [in] aStretchFlags Flags specifying how the stretch blt should
be done. The following flag settings are
available:

twGfxStretchFast means use the fatest
possible approach which may yield an
inexact match to the aDestRect area. Note
that performance will vary the most with
this setting depending upon whether or not
the graphics acclerator ends up doing the
stretch blt or not (this decision depends
upon the relationship between the source
and destination dimensions).

twGfxStretchExact means use an exact
stretch that will match exactly the
aDestRect area. This setting will not use the

Tapwave TwGfx Graphics API Reference

42

graphics accelerator directly; however,
performance will be consistent regardless of
the source and destination dimensions.

twGfxStretchSmooth means apply smoothing
instead of pixel replication. This flag can be
combined with twGfxStretchFast or
twGfxStretchExact.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination
point or the source rectangle address values outside their respective
surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

twGfxErrorInvalidFlags – the flags specified by aStretchFlags are
invalid

Comments The source surface is stretched or shrunk to fit in the destination
rectangle. The exact effect on the pixels is not defined here.

The TwGfxStretchBlt operation is not fast and is only marginally
accelerated by the graphics accelerator. TwGfxStretchBlt is equivalent in
function to calling TwGfxStretchBlt2 with the aStretchFlags argument set
to “twGfxStretchSmooth | twGfxStretchExact”.

For TwGfxStretchBlt2 the aStretchFlags argument is specified by the
caller and gives the caller full control of the outcome. Regardless of
which flag settings your application uses, please test and see if it meets
your needs. Note that the twGfxStretchExact flag is the highest
precedence - if it's set then the graphics accelerator will not be directly
used to do the stretch blt.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

43

TwGfxTileBlt

Purpose Call a tiling bitblt rendering function.

Prototype Err TwGfxTileBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxRectType* aDestRect,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxPointType* aSourceAlignmentPoint)

Parameter
s

[in] aDestSurface A handle to the surface to which you want
bitblt.

 [in] aDestRect The destination area to tile with the
source surface.

 [in] aSourceSurface A handle to the surface from which you
want to bitblt.

 [in] aSourceAlignmentPoint The offset in x & y from which to begin
the tiling.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library
is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or
the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

Comments The source surface is drawn as many times as necessary to cover the destination
rectangle. The first pixel written to the upper-left corner of the destination
rectangle will come from the source surface from the
aSourceAlignmentPoint (x,y) offset.

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

44

TwGfxTransformBlt

Purpose Call a transforming bitblt rendering function.

Prototype Err TwGfxTransformBlt(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 TwGfxSurfaceType* aSourceSurface,
 const TwGfxRectType* aSourceRect,
 Int32 aRotationFlags,
 Int32 aMirrorFlags)

Parameter
s

[in] aDestSurface A handle to the surface to which you want
bitblt.

 [in] aDestPoint The upper-left coordinate in the destination
surface to which you want bitblt.

 [in] aSourceSurface A handle to the surface from which you want
to bitblt.

 [in] aSourceRect The area in the source surface from which
you want to bitblt.

 [in] aRotationFlags A value indicating the kind of rotation to
perform.

 [in] aMirrorFlags A value indicating the kind of mirroring to
perform.

Tapwave TwGfx Graphics API Reference

45

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination
point or the source rectangle address values are outside their respective
surfaces

twGfxErrorInvalidRotation – the rotation value is invalid

twGfxErrorInvalidMirror – the mirror value is invalid

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Comments Legal values for aRotationFlags:

twGfxRotateNone, twGfxRotateCW90, twGfxRotateCW180,
twGfxRotateCW270, twGfxRotateCCW90, twGfxRotateCCW180,
twGfxRotateCCW270

Legal values for aMirrorFlags:

twGfxMirrorNone, twGfxMirrorHorizontal,
twGfxMirrorVertical, twGfxMirrorBoth

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

46

TwGfxDrawPoints

Purpose Draw a set of points to the destination surface.

Prototype Err TwGfxDrawPoints(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aPoints,
 Int32 aNumberOfPoints,
 TwGfxPackedRGBType aColor)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aPoints A pointer to the array of
TwGfxPointType objects containing the
x,y coordinates of the points to be plotted.

 [in] aNumberOfPoints The number of points to plot.

 [in] aColor The color to use when plotting each point.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or
the library is not open

twGfxErrorNullPointer – aPoints is NULL

twGfxErrorInvalidCount – the aNumberOfPoints value is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

47

TwGfxDrawColorPoints

Purpose Draw a set of points to the destination surface. Each point has its own color.

Prototype Err TwGfxDrawColorPoints(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aPoints,
 Int32 aNumberOfPoints,
 const TwGfxPackedRGBType* aColors)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aPoints A pointer to the array of TwGfxPointType
objects containing the x,y coordinates of the
points to be plotted.

 [in] aNumberOfPoints The number of points to plot.

 [in] aColors The color to use when plotting each point.
There must be one color in the aColors array
for each point in the aPoints array.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aPoints or aColors is NULL

twGfxErrorInvalidCount – the aNumberOfPoints value is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

48

TwGfxDrawLines

Purpose Draw one or more connected lines.

Prototype Err TwGfxDrawLines(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aPoints,
 Int32 aNumberOfPoints,
 TwGfxPackedRGBType aColor)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aPoints The set of points that define the lines to be drawn.
Lines are drawn starting at (aPoints[I-
1].x,aPoints[I-1].y) to
(aPoints[I].x,aPoints[I].y) where I goes
from 1 to aNumberOfPoints-1. Therefore, if
aNumberOfPoints is 3 then 2 lines will be drawn.

 [in] aNumberOfPoints The number of points in aPoints.

 [in] aColor The color to use when drawing each line.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is
not open

twGfxErrorNullPointer – aPoints is NULL

twGfxErrorInvalidCount – the number of points is less than two.

twGfxErrorOperationInProgress – an asynchronous operation is in progress

Comments Example: If aNumberOfPoints is 3 then the following two lines are drawn:

(aPoints[0].x,aPoints[0].y) to (aPoints[1].x,aPoints[1].y)

(aPoints[1].x,aPoints[1].y) to (aPoints[2].x,aPoints[2].y)

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

49

Tapwave TwGfx Graphics API Reference

50

TwGfxDrawLineSegments

Purpose Draw one or more independent lines.

Prototype Err TwGfxDrawLineSegments(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aPoints,
 Int32 aNumberOfPoints,
 TwGfxPackedRGBType aColor)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aPoints The set of points that define the lines to be
drawn.

 [in] aNumberOfPoints The number of points in aPoints.

 [in] aColor The color to use when drawing each line.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aPoints is NULL

twGfxErrorInvalidCount – the number of points is not even or is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Comments Example: If aNumberOfPoints is 4 then the following two lines are drawn:

(aPoints[0].x,aPoints[0].y) to (aPoints[1].x,aPoints[1].y)

(aPoints[2].x,aPoints[2].y) to (aPoints[3].x,aPoints[3].y)

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

51

TwGfxDrawRect

Purpose Draw the outline of a rectangle.

Prototype Err TwGfxDrawRect(TwGfxSurfaceType* aDestSurface,
 const TwGfxRectType* aRect,
 TwGfxPackedRGBColor aColor)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aRect A pointer to the rectangle to outline.

 [in] aColor The color to use when drawing the outline.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aRect is NULL

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

52

TwGfxFillRect

Purpose Fill a rectangle with the given color.

Prototype Err TwGfxFillRect(TwGfxSurfaceType* aDestSurface,
 const TwGfxRectType* aRect,
 TwGfxPackedRGBColor aColor)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aRect A pointer to the rectangle to fill.

 [in] aColor The color to use when filling the rectangle.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aRect is NULL

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

53

TwGfxDrawSpans

Purpose Draw one or more horizontal spans with a constant color.

Prototype Err TwGfxDrawSpans(TwGfxSurfaceType* aDestSurface,
 const TwGfxSpanType* aSpans,
 Int32 aNumberOfSpans,
 TwGfxPackedRGBColor aColor)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aSpans A pointer to one or more TwGfxSpanType
objects.

 [in] aNumberOfSpans The number of spans to draw.

 [in] aColor The color to draw each span.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aSpans is NULL

twGfxErrorInvalidCount – the number of spans is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

Header TwGfx.h

Tapwave TwGfx Graphics API Reference

54

TwGfxDrawBitmap

Purpose Draw a bitmap to the destination surface.

Prototype Err TwGfxDrawBitmap(TwGfxSurfaceType* aDestSurface,
 const TwGfxPointType* aDestPoint,
 const TwGfxBitmapType* aBitmap)

Parameter
s

[in] aDestSurface A handle to the surface.

 [in] aDestPoint The destination coordinates in the destination
surface (upper-left) to draw the bitmap.

 [in] aBitmap A pointer to the TwGfxBitmapType object
which describes the size and pixel format of
the bitmap. Note that the size field must be
set to the size of the TwGfxBitmapType data
structure.

Result errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the
library is not open

twGfxErrorNullPointer – aDestPoint or aBitmap is NULL

twGfxErrorBadObjectVersion – the TwGfxBitmapType size field
doesn’t match a known version for the library

twGfxErrorOperationInProgress – an asynchronous operation is in
progress

twGfxErrorInvalidSize – the bitmap rowbytes value is too small.

Tapwave TwGfx Graphics API Reference

55

Comments The following pixel formats are supported for bitmaps:

 twGfxPixelFormatMonochrome
 twGfxPixelFormat2bpp
 twGfxPixelFormat4bpp
 twGfxPixelFormat8bpp
 twGfxPixelFormatRGB565_LE
 twGfxPixelFormatRGB565_BE

For index formats the palette field in aBitmap must point to a table of
color values used to convert the index data into display pixels.

The bitmap rowbytes must be a multiple of sizeof(UInt32) for the
monochrome pixel format. For the 2bpp pixel format, the rowbytes must
be >= (bitmap.width + 3) / 4. For the 4bpp pixel format, the rowbytes
must be >= (bitmap.width + 1) / 2. For the 8bpp pixel format the
rowbytes must be >= bitmap.width. For the 16bpp pixel formats the
rowbytes must be >= 2 * bitmap.width.

Header TwGfx.h

	Copyright
	Background
	Library data types
	Library macros
	Library access functions
	Surface functions
	Rendering functions

