
Tapwave Advanced Sound API Reference

Tapwave® Advanced Sound API
Reference
Version 1.1a

1

Tapwave Advanced Sound API Reference

Copyright

© Copyright 2003-2004 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. The
Palm logo, HotSync, Palm OS, Palm, Palm Powered, and the Palm Powered logo are registered trademarks of
PalmSource, Inc., and its affiliates.Windows is a registered trademark of Microsoft Corporation, Inc. All other brands
are trademarks or registered trademarks of their respective owners.

2

Tapwave Advanced Sound API Reference

1.Application Sound Level
Tapwave devices have a master control for device-wide volume and muting, and APIs
are provided to control these settings. The master volume control is referred to as the
primary volume. We encourage developers to create applications that either use the
primary volume or respect it by “mixing” their own sounds into other sounds the
device may make. If an application plays a sound at 100%, it plays at the user’s
preferred volume (or not at all if the volume is muted.) Applications can only reduce
the primary volume, they cannot increase it to play sounds at “110%” of the user’s
chosen volume.

For compatibility with non-Tapwave devices, applications can read (and attempt to
set) the Game Sound Level in the system preferences, however on Tapwave devices
this value is locked at 100%. This can be obtained by calling the Palm OS API
PrefGetPreference. For details, see “Section 43: Preferences” in the Palm OS
Programmer’s API Reference. Note that the currently defined sound volume range is 0-
sndMaxAmp (64).

However, Tapwave developers are encouraged to use the provided routines for getting
and setting the primary volume, and to allow the user to easily change the volume
from within any application. If appropriate, developers may want to provide advanced
“mixing” controls to independently control the volume of different application sounds,
but keep in mind that these are always relative to the user’s primary volume setting.

The only exception to the user’s primary volume are alarm sounds. When an alarm
plays, all other sounds are suspended, the speakers are turned on (even if headphones
are inserted), and the user’s primary volume setting may be temporarily increased.
The alarm state is automatically invoked when the Attention Manager is active.
However, applications that do not use the Attention Manager you may need to use the
provided APIs to provide the correct behavior for alarms.

Muting is done outside of the main volume control, so when a user unmutes the
volume, it returns to the original setting. Tapwave devices offer an additional user
interface and API around muting and unmuting, however most applications should not
require coding of the mute state.

TwSndGetVolume

Purpose Gets the current primary volume.

Prototype UInt16 TwSndGetVolume(void)

Result Number between 0 and sndMaxAmp (64) indicating the
current primary volume.

3

http://www.palmos.com/dev/support/docs/palmos/Preferences.html

Tapwave Advanced Sound API Reference

Comments This volume level does not match any Palm OS volume setting or
preference. The Palm OS volumes are always relative to this primary
setting, with “maximum” volume in Palm OS being the current primary
volume.

Header TwSound.h

TwSndSetVolume

Purpose Sets the primary volume.

Prototype Err TwSndSetVolume(UInt16 newVolume)

Parameter
s

newVolume A number between 0 and sndMaxAmp (64) for the new
volume. 0 is effectively muted, but differs from the mute
state.

Result sysErrParamErr if the newVolume is out of range.

Comments Changing this volume level does not change any Palm OS volume setting
or preference. The Palm OS volumes are always relative to this primary
setting, with “maximum” volume in Palm OS being the current primary
volume. (Thus system sounds (clicks, beeps, etc) are set relative to this
level: turning down the primary volume also turns down the beeps and
clicks.)

Header TwSound.h

twNotifySoundVolumeChangedEvent

Purpose Broadcasts when the volume is adjusted.

4

Tapwave Advanced Sound API Reference

Prototype #define twNotifySoundVolumeChangedEvent 'Twsv'

typedef UInt32 TwNotifySoundVolumeChangedDetailsType;

#define twSndVolumeChangedHeadphoneInserted

0x00010000UL
#define twSndVolumeChangedHeadphoneRemoved

0x00020000UL
#define twSndVolumeChangedSetVolume

0x00030000UL
#define twSndVolumeChangedReasonMask

0x00FF0000UL

Parameter
s

details The notify details pointer is really a 32-bit masked value.
The lower 16 bits contain the new sound volume and the
upper 16 bits contain the reason the volume was changed.

Comments This NotifyManager event is sent when TwSndSetVolume is called to
change the primary volume, or when the volume is changed as a result of
inserting or removing the headphones. (Note that the decision to change
the volume with headphone insertion may vary depending on yet to be
determined values.)

Header TwSound.h

Sample UInt32 details = (UInt32) notifyDetailsP;
if ((details & twSndVolumeChangedReasonMask) ==

twSndVolumeChangedHeadphoneInserted) { }

TwSndGetBassBoost

Purpose Gets the current headphone bass boost level.

Prototype UInt16 TwSndGetBassBoost(void)

Result Number between 0 and sndMaxAmp (64) indicating the
current bass boost level.

5

Tapwave Advanced Sound API Reference

Comments This call returns the current bass boost setting. Bass boost applies only to
sounds played through the headphones.

Header TwSound.h

TwSndSetBassBoost

Purpose Sets the current headphone bass boost level.

Prototype Err TwSndSetBassBoost(UInt16 boostLevel)

Parameter
s

boostLevel Either 0 or smdMaxAmp (64) for the boost level. 0
means no bass boost, 64 means turn on bass boost.

Result sysErrParamErr if the boostLevel is out of range.

Header TwSound.h

TwSndSetMute

Purpose Mute or unmute the device.

Prototype void TwSndSetMute(Boolean mute, Uint32 unmuteAt)

Parameter
s

mute The new setting, true to mute, false to unmute.

 unmuteAt The time when the mute is canceled. Use zero to mute
indefinitely.

Comments This does not change the result or the behavior of TwSndGetVolume and
TwSndSetVolume. If the primary volume is changed while muted, the
changed value will be effective on unmute.

6

Tapwave Advanced Sound API Reference

Header TwSound.h

TwSndGetMute

Purpose Query the mute setting.

Prototype Boolean TwSndSetMute(UInt32* unmuteAtP)

Parameter
s

unmuteAtP A pointer to a UInt32 that is defined as the time when the
mute is scheduled to be canceled. The value will be zero if
sound is not muted or if unmute is not scheduled. Pass
NULL if you don’t care about this setting.

Result The mute setting – true if muted, false if not.

Header TwSound.h

twNotifyMuteEvent

Purpose Broadcasts when the device is being muted or unmuted.

Prototype #define twNotifyMuteEvent 'Twsm'

typedef struct TwNotifyMuteDetailsTag {

Int32 muted;
UInt32 unmuteAt;

} TwNotifyMuteDetailsType;

Parameter
s

muted True if the device is being muted, false if it is being
unmuted.

Comments This NotifyManager event is sent when TwSndSetMute is called to
change the mute state, or when the mute timer expires and the device
unmutes. Applications that provide UI which is synchronized with the
system-wide mute state will normally request this notification while they

7

Tapwave Advanced Sound API Reference

are running.

Header TwSound.h

TwSndPlaySystemSound

Purpose Play a standard system sound or a Tapwave special sound.

Prototype Err TwSndPlaySystemSound(enum TwSysBeepTag beepID)

Parameter
s

beepID The ID of the sound to play. An invalid ID returns a
sysErrParamErr.

8

Tapwave Advanced Sound API Reference

Comments Tapwave special sounds are defined by the enum and correspond to new
sounds used for feedback during navigation and at other times. You are
welcome to use these special sounds in your own applications, but note
that the actual sound played may change in future devices. Below is a list
of Tapwave’s additional beep tags and their interface “meaning.”

twSndBumpedEdge = hit the edge of a scrollable area

twSndFollowedLink = followed a link to another screen or page

twSndCardInserted = SD card inserted

twSndCardRemoved = SD card removed

twSndDocked = HotSync cable plugged in or device inserted in cradle

twSndUndocked = HotSync cable unplugged or device removed from
cradle

twSndNextPage = flipped or scrolled to the next page

twSndPrevPage = flipped or scrolled to a previous page

twSndSyncBegin = HotSync started

twSndSyncEnd = HotSync finished

twSndEnter = entered a new folder

twSndLaunch = launched an application

twSndSelection = selected an item

twSndLeave = left a folder

twSndGraffitiOpen = Pen input area opened

twSndGraffitiClose = Pen input area closed

twSndRotate = screen rotated

twSndBluetoothOn = Bluetooth enabled

twSndBluetoothOff = Bluetooth disabled

twSndVolumeChange = sample sound played to demonstrate new
volume

twSndConnect = Bluetooth connection made

9

Tapwave Advanced Sound API Reference

twSndGoDoPlay = animation step sound

10

Tapwave Advanced Sound API Reference

Header TwSound.h

TwSndSetAlarmPlaying

Purpose Invoke (or complete) alarm mode. Speakers are turned on even if
headphones are inserted. If headphones are not inserted, the primary
volume is set to the maximum level. Mute state is not changed.

Prototype Err TwSndSetAlarmPlaying(Boolean isAlarm)
 TAL_TRAP(trapTwSndSetAlarmPlaying);

Parameter
s

isAlarm True to turn on alarm mode, false to turn alarm mode off
again.

Comments Applications which use the Attention Manager do not need to call this
function, the Attention Manager sets the proper mode before asking the
application to play its sound. However, many apps provide UI that
demonstrates the alarm sound when the user chooses an alarm – these
apps should call this function before and after playing the demonstration
sound. Also, applications that play alarms that do not use Attention
Manager may need to call this function to get proper alarm behavior.

Header TwSound.h

2.Sound Device API

In addition to the TwSnd API additions, a Tapwave device API exists for feeding data
directly to the audio mixer (the mixer is responsible for combining sound data from
multiple sources into a single stream which is heard through the speakers or
headphones).

The “mixer” device (whose specific device API is described in TwVdMixer.h) can be
opened using TwDeviceOpen, configured using TwDeviceSetProperty, written to using
TwDeviceWrite, and closed using TwDeviceClose. When using TwDeviceWrite the raw
sample data is written to the buffer associated with the device; the audio mixer uses
this buffer to resample and mix into the audio output buffer.

Unlike the SndStream API, there is no notion of “starting” or “stopping” the stream.
The SndStream API is a “pull” model API – a callback is invoked by a system thread to

11

Tapwave Advanced Sound API Reference

“pull” data into a buffer at a periodic rate. The mixer device API is a “push” model
API – the application can invoke TwDeviceWrite at whatever rate it desires (note that
TwDeviceWrite will block until all of the data given it is written into the buffer).
Please note that the mixer always mixes at a specific sample rate with a specific
number of samples per buffer. If your buffer doesn’t have enough data present then
the mixer will ignore your buffer until the next sample period. Use the
TW_VD_MIXER_BUFFER_SAMPLES to determine how many samples must be written to
the device buffer to satisfy the mixer.

Here is a list of the properties supported by TwDeviceSetProperty and
TwDeviceGetProperty for the mixer device:

Property Description

TW_VD_MIXER_CONFIG Set/Get the configuration for this mixer stream. The
type of the argument data must be this:

typedef struct TwVdMixerConfigProperty {

 UInt32 sampleRate; // e.g. 44100

 UInt32 format; // See SoundMgr.h SndFormatType

 UInt32 type; // See SoundMgr.h SndSampleType

 UInt32 width; // See SoundMgr.h SndStreamWidth

} TwVdMixerConfigProperty;

TW_VD_MIXER_VOLUME Set/Get the volume for the mixer. The argument
data must be a UInt32. The volume range is the same
as the SndStream volume range.

TW_VD_MIXER_PAN Set/Get the mixer pan position. The argument data
must be a UInt32. The pan position is the same as
the SndStream pan position.

TW_VD_MIXER_BUFFER_BYTES Get the mixer buffer size. This will return the
number of bytes of buffering used by the audio
mixer. The argument data must be a UInt32. Note
that this value will be a constant for a given
hardware configuration.

12

Tapwave Advanced Sound API Reference

TW_VD_MIXER_BUFFER_FRAMES Get the mixer buffer size, but in samples per buffer
instead of bytes per buffer. The argument data must
be a UInt32. This value will depend on the actual
configuration of the stream. This Get will return an
error if the stream has not been configured.

13

	Copyright
	Application Sound Level
	2.Sound Device API

