
Tapwave TwJpg Graphics API Reference

Tapwave® TwJpg Graphics API Reference
Version 1.1a

Tapwave TwJpg Graphics API Reference

Copyright

© Copyright 2003-2004 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. The Palm logo, HotSync,
Palm OS, Palm, Palm Powered, and the Palm Powered logo are registered trademarks of PalmSource, Inc., and its affiliates. X-Forge is a
trademark of Fathammer, Ltd. Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft
Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

Tapwave TwJpg Graphics API Reference

Background
To use the TwJpg library, your application must include TwJpg.h, which is automatically included
by Tapwave.h.

This library provides facilities for decoding “jpeg” images. The image data is delivered to the
library through a callback called a “TwJpgImageReader”. Because a callback is used, the data can
be located in a resource, in memory, or in a file on a card. The image decoding can produce a
buffer of pixel data in memory or a TwGfx surface. During the decoding process the image can also
be scaled; this scaling can optionally be anti-aliased for a higher quality result.

Most of these calls will allocate temporary storage using the dynamic heap. If these allocations fail
then an error of sysErrNoFreeRAM will be returned.

Tapwave TwJpg Graphics API Reference

Library Data Types

typedef struct TwJpgImageTag TwJpgImageType;

typedef struct TwJpgImageInfoType {
 Int32 size; /* caller MUST set this to sizeof(TwJpgImageInfoType) */

 Int32 width, height; /* image dimensions */
 Int32 colorspace; /* colorspace */
 Int32 components; /* # of color components (RGB==3, for example) */

 // TODO: add "standard" markers
} TwJpgImageInfoType;

/*
 * Image reader callback. This is used by the jpg functions to read
 * data for a given image. The return value is a count of the number
 * of bytes read. Zero indicates an EOF, positive values indicate the
 * amount returned. Negative values indicates an error. aHandle is a
 * data value provided to the callback for the usage of the callback
 * implementation.
 */
typedef Int32 (*TwJpgImageReader)(void* aHandle,
 void* aBuffer,
 UInt32 aAmount);

/*
 * This predicate is invoked during the decode process to see if the
 * decoder should abort the current decode. The predicate should
 * return a non-zero value if the decode should be aborted, zero
 * otherwise.
 */
typedef Int32 (*TwJpgAbortCheck)(void* aHandle);

Tapwave TwJpg Graphics API Reference

API

TwJpgOpenImage

Purpose Open an image for eventual decoding.

Prototype Err TwJpgOpenImage(TwJpgImageType** aResult,
 TwJpgImageReader aReader,
 void* aHandle)

Parameter
s

[out] aResult Pointer to a handle to the image. If the request
succeeds then *aResult is set to a handle to the
image for use in subsequent calls.

 [in] aReader Pointer to a TwJpgImageReader function that is
used by the library to provide data during the
decoding process.

 [in] aHandle An opaque pointer provided by the caller which is
passed through to the reader callback function.

Result errNone – Succeeded

TwJpgErrorNullPointer –either aResult or aReader is NULL

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgCloseImage

Purpose Release the resources associated with the image.

Prototype Err TwJpgCloseImage(TwJpgImageType* aImage)

Parameter
s

[in] aImage A handle to the image.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

Side
Effects

This function releases all resources allocated by the TwJpg library for the
image.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgSetAbortCheck

Purpose Set the “abort check” callback function associated with the image.

Prototype Err TwJpgSetAbortCheck(TwJpgImageType* aImage,
 TwJpgAbortCheck aChecker,
 void* aHandle)

Parameter
s

[in] aImage A handle to the image.

 [in] aChecker A callback function called during image decoding
to check if the decoding process should be
aborted.

 [in] aHandle An opaque pointer provided by the caller which is
passed through to the checker callback function.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

Side
Effects

During the image decoding process, if an abort check callback is defined,
the callback will be invoked periodically to see if the decoding process
should be aborted or not.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgGetAbortCheck

Purpose Get the “abort check” callback function associated with the image.

Prototype Err TwJpgGetAbortCheck(TwJpgImageType* aImage,
 TwJpgAbortCheck* aCheckerResult,
 void** aHandleResult)

Parameter
s

[in] aImage A handle to the image.

 [out] aCheckerResult Out parameter used to store the last abort
check callback function set by
TwJpgSetAbortCheck. NULL will be stored
if no call to TwJpgSetAbortCheck has been
made.

 [out] aHandleResult A pointer to the opaque handle that will be
set to the value provided by the last call to
TwJpgSetAbortCheck.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

twJpgErrorNullPointer – the aCheckerResult or aHandleResult
pointers are NULL

Side
Effects

None.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgGetImageInfo

Purpose Get image information.

Prototype Err TwJpgGetImageInfo(TwJpgImageType* aImage,
 TwJpgImageInfoType* aInfoResult)

Parameter
s

[in] aImage A handle to the image.

 [inout] aInfoResult In/Out parameter used to store the information
about the image. This pointer must not be
NULL and the size field must be initialized to
the size of the data structure.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

twJpgErrorNullPointer – the aInfoResult is a null pointer

twJpgErrorBadObjectVersion – the TwJpgImageInfoType size field
doesn’t match a known version for the library

Side
Effects

This call returns the dimensions of the image, as well as its colorspace and
number of color components (e.g. 1 for grayscale, 3 for RGB). The
TwJpgImageInfoType has the following fields:

typedef struct TwJpgImageInfoType {
 Int32 size;

 Int32 width, height; /* image dimensions */

 Int32 colorspace; /* colorspace */
 Int32 components; /* # of color components (RGB==3) */

} TwJpgImageInfoType;

Note that the “size” field must be set to “sizeof(TwJpgImageInfoType)”
before the call is made otherwise twJpgErrorBadObjectVersion may be
returned.

Also, this call will read the “image header” from the jpeg data which means
that the reader callback function set by the TwJpgOpenImage call.

Tapwave TwJpg Graphics API Reference

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgDecodeImage

Purpose Fully decode the image into a buffer allocated by this call.

Prototype Err TwJpgDecodeImage(TwJpgImageType* aImage,
 Int32 aPixelFormat,
 void** aBufferResult)

Parameter
s

[in] aImage A handle to the image.

 [in] aPixelFormat This argument describes the desired format of
the decoded pixel data.

 [out] aBufferResult A pointer to the pixel buffer result. This
pointer is set to the buffer allocated by the
decoder.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

twJpgErrorNullPointer – aBufferResult is a null pointer

twJpgErrorInvalidPixelFormat – aPixelFormat is invalid

twJpgErrorBadImage – the image decoding failed

Side
Effects

Decode the entire image into *aBufferResult. TwJpgDecodeImage will allocate
the memory and return it in *aBufferResult. The caller must free it when done
using MemPtrFree.

The format of the buffer data is determined by the aPixelFormat argument.
Note that this is the only API that will provide RGB888 bits. The buffer data
will contain the image width times the bytes per pixel (2 or 3) for each row of
data. The first row of data corresponds to a “y” of zero. The second row of
data (if there is one) corresponds to a “y” of one, and so on.

This call will return twJpgErrorDecodeAborted if the abort checker aborts the
decode.

Note that it is allowed by this API to decode an image multiple times. It is the
callers responsibility to rewind the reader state to allow for this to actually

Tapwave TwJpg Graphics API Reference

work. If the caller does not rewind the reader state then most likely the
subsequent call will yield a twJpgErrorBadImage error.

If the image decode fails for any reason (premature “EOF” on the reader data,
invalid data in the stream, etc) then the twJpgErrorBadImage will be
returned.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgDecodeAndScaleImage

Purpose Fully decode and scale the image into a buffer allocated by this call.

Prototype Err TwJpgDecodeAndScaleImage(TwJpgImageType* aImage,
 Int32 aScaledWidth,
 Int32 aScaledHeight,
 Boolean aAntiAlias,
 void** aBufferResult)

Parameter
s

[in] aImage A handle to the image.

 [in] aScaledWidth The desired width of the scaled result.

 [in] aScaledHeight The desired height of the scaled result.

 [in] aAntiAlias A flag indicating whether or not to perform an
anti-aliased scale operation. See below for
more information.

 [out] aBufferResult A pointer to the pixel buffer result. This
pointer is set to the buffer allocated by the
decoder.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

twJpgErrorNullPointer – aBufferResult is a null pointer

twJpgErrorBadImage – the image decoding failed

twJpgErrorInvalidSize – the scaled width/height values are invalid

Side
Effects

The image is fully decoded with the same behavior as TwJpgDecodeImage
with a pixel format of twJpgPixelFormatRGB565_LE.

The scaling works as follows: preliminary scaling is done using the jpeg

Tapwave TwJpg Graphics API Reference

decoding process. If possible, entire blocks of jpeg data will be skipped to
produce a reduced size image (clearly this only applies only if the scaling is
shrinking the image dimensions). This will speed up the decode time of large
images as a side effect.

If the decode level scaling doesn’t produce the exact size image then a
second level of scaling is done using the TwJpgScaleImageBuffer function. The
aAntiAlias flag is passed into this routine to determine if point sampling or
anti-aliasing is used for the scaling.

The resulting buffer will have a bytes per row that is two times the scaled
width and there will be aScaledHeight rows.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgDecodeImageToSurface

Purpose Decode the image into an existing TwGfx surface.

Prototype Err TwJpgDecodeImageToSurface(TwJpgImageType* aImage,
 Boolean aAntiAlias,
 TwGfxSurfaceType* aDestSurface)

Parameter
s

[in] aImage A handle to the image.

 [in] aAntiAlias A flag indicating whether or not to perform an
anti-aliased scale operation. See below for more
information.

 [in] aDestSurface The surface to decode the image into.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

twJpgErrorBadImage – the image decoding failed

Side
Effects

The image is fully decoded with the same behavior as TwJpgDecodeImage with a
pixel format of twJpgPixelFormatRGB565_LE.

The image will be scaled to fit the surface dimensions exactly as if by calling
TwJpgScaleImageBuffer and passing in the aAntiAlias flag.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgDecodeImageToNewSurface

Purpose Decode the image into a new TwGfx surface.

Prototype Err TwJpgDecodeImageToNewSurface(TwJpgImageType* aImage,
 Int32 aScaledWidth,
 Int32 aScaledHeight,
 Boolean aAntiAlias,
 TwGfxType* aGfxLib,
 TwGfxSurfaceType** aSurfaceResult)

Parameter
s

[in] aImage A handle to the image.

 [in] aScaledWidth The desired width of the scaled result.

 [in] aScaledHeight The desired height of the scaled result.

 [in] aAntiAlias A flag indicating whether or not to perform an
anti-aliased scale operation. See below for more
information.

 [in] aGfxLib A handle to an open instance of the TwGfx library.

 [out] aSurfaceResult A pointer to where the allocated surface handle
will be stored.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

twJpgErrorBadImage – the image decoding failed

twJpgErrorInvalidSize – the scaled width/height values are invalid

Side This call is simlar to TwJpgDecodeToSurface except that a new surface is created

Tapwave TwJpg Graphics API Reference

Effects with the dimensions of aScaledWidth and aScaledHeight.

The image will be scaled to fit the surface dimensions exactly as if by calling
TwJpgScaleImageBuffer and passing in the aAntiAlias flag.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

TwJpgScaleImageBuffer

Purpose Scale a block of image data that is in the pixel format of
twJpgPixelFormatRGB565_LE.

Prototype Err TwJpgScaleImageBuffer(void* aBufferIn,
 Int32 aInWidth,
 Int32 aInHeight,
 Int32 aScaledWidth,
 Int32 aScaledHeight,
 Boolean aAntiAlias,
 void** aBufferResult)

Parameter
s

[in] aBufferIn A handle to the input pixel data.

 [in] aInWidth The width, in pixels, of the input data. The bytes
per row of the input data is two times the width in
pixels.

 [in] aInheight The height of the input image data.

 [in] aScaledWidth The desired width of the scaled result.

 [in] aScaledHeight The desired height of the scaled result.

 [in] aAntiAlias A flag indicating whether or not to perform an
anti-aliased scale operation.

 [out] aBufferResult A pointer to the pixel buffer result. This pointer is
set to the buffer allocated by the scaler.

Result errNone – Succeeded

twJpgErrorInvalidHandle – the handle to the image was invalid

Tapwave TwJpg Graphics API Reference

twJpgErrorBadImage – the image decoding failed

twJpgErrorInvalidSize – the scaled width/height values are invalid or the
input width/height values are invalid.

Side
Effects

This is a mostly general purpose scaling routine. If aAntiAlias is false then the
image data is scaled using “point sampling”, otherwise a higher quality (but much
slower) anti-aliased scaler is used.

The input image data is restricted to be in the pixel format of
twJpgPixelFormatRGB565_LE and must organized such that the bytes per row is
the same as the input width times two.

Header TwJpg.h

Tapwave TwJpg Graphics API Reference

Examples

This first example uses VFS to read jpeg files from a card and decode them to a block of memory.

static Int32 vfsReader(void* aHandle, void* aBuffer, UInt32 aAmount) {
 FileRef ref = (FileRef) aHandle;
 UInt32 nbytes;
 Err err = VFSFileRead(ref, aAmount, aBuffer, &nbytes);
 return (err && err != vfsErrFileEOF) ? -err : nbytes;
}

{
 Err err;
 TwJpgImageType* img;
 void* pixels;

 /* not shown: open the file using VFSFileOpen */
 err = TwJpgOpenImage(&img, vfsReader, (void*)fileRef);
 err = TwJpgDecodeImage(img, twJpgPixelFormatRGB565_LE, &pixels);
}

	Copyright
	Background
	Library Data Types
	API
	Examples

