
Tapwave TwMidi Sound API Reference

Tapwave® TwMidi Sound API Reference
Version 1.1a

Tapwave TwMidi Sound API Reference

Copyright

© Copyright 2004 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. The Palm logo, HotSync,
Palm OS, Palm, Palm Powered, and the Palm Powered logo are registered trademarks of PalmSource, Inc., and its affiliates. X-Forge is a
trademark of Fathammer, Ltd. Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft
Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

Tapwave TwMidi Sound API Reference

Background

To use the TwMidi library, your application must include TwMidi.h, which is automatically
included by Tapwave.h.

This library provides facilities for the control and playback of midi. Midi data files (SMF format 0)
can be directly played using this API. Midi volume control can also be manipulated. In addition,
direct midi synthesizer control (note on, off, etc.) is available. Note that this API is not supported
on the simulator.

The device supports a limited number of simultaneous midi voices (16). This means that if a single
smf track attempts to use more than 16 simultaneous voices, it will fail.

This document does not attempt to describe the midi standard, the SMF file format. In addition,
the actual audible representation of the midi voices are not guaranteed to remain consistent across
product revisions. Said another way: If we change the hardware midi chip, then it may sound
different in the future.

One major difference between the midi api’s here and the PalmOS midi api’s is that these api’s do
not block the application task. For example, when an smf stream is played using TwSmfPlay the
call returns immediately and the application can continue execution.

Tapwave TwMidi Sound API Reference

Library Data Types

typedef struct TwSmfType* TwSmfHandle;

typedef struct TwMidiType* TwMidiHandle;

Tapwave TwMidi Sound API Reference

API

TwMidiGetLimits

Purpose Query specific limits to the midi implementation.

Prototype Err TwMidiGetLimits(Int32 aLimitName,
 Int32* aResult)

Parameter
s

[in] aLimitName The name of the limit to query.

 [out] aResult The value of the limit, assuming aLimitName is a
valid limit name.

Result errNone – Succeeded

twMidiErrorNullPointer – aResult is NULL

twMidiErrorBadParam – aLimitName is invalid

Comments aLimitName must be one of the following values:

twMidiLimitMaxSmfHandles – this query returns the maximum number of
simultaneous open smf handles supported by TwSmfOpen.

twMidiLimitMaxMidiHandles – this query returns the maximum number of
simultaneous open midi handles supported by TwMidOpen.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiSetMasterVolume

Purpose Set the master midi volume.

Prototype Err TwMidiSetMasterMidiVolume(Int32 aVolume)

Parameter
s

[in] aVolume The new master midi volume setting. The volume
value is in the range of zero to
“twMidiMaxVolume” which is defined to be 127.

Result errNone – Succeeded

twMidiErrorBadParam – aVolume is invalid

Comments The maximum volume for midi/smf is 127. Note that this value is
different than sndMaxAmp and from the unity gain value (1024) in the
sound manager stream api's. The reason is that midi volumes (e.g. key
velocities) have the range zero to 127 and it was felt that the midi api's
should be self consistent and consistent with the midi standard. To make
things easier, two conversion macros are provided:

Convert a sound manager volume (0-sndMaxAmp) into a midi volume (0-
twMidiMaxVolume): TwMidiCvtSndVolume2MidiVolume(sndvol)

Convert a midi volume (0-twMidiMaxVolume) into a sound manager
volume (0-sndMaxAmp): TwMidiCvtMidiVolume2SndVolume(midivol)

Side
Effects

The master midi volume is changed for all smf streams and all midi notes
being played. Precisely when the volume takes effect is undefined in the
sense that how long before it affects any currently playing smf streams or
midi notes is undefined. If the volume is changed before a stream is
started or a note is turned on then the volume will affect the
stream/note.

Also note that when your application exits, the master midi volume will
be reset to the system default value (which is twMidiMaxVolume).

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiGetMasterVolume

Purpose Get the master midi volume.

Prototype Err TwMidiGetMasterMidiVolume(Int32* aResult)

Parameter
s

[out] aResult A pointer to where the current master midi
volume should be stored.

Result errNone – Succeeded

twMidiErrorNullPointer – aResult is NULL

Comments This call returns the current setting for the midi master volume in the
range from 0 to twMidiMaxVolume (127).

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiPlaySmf

Purpose Play an SMF encoded block of data.

Prototype Err TwSmfOpen(UInt8* aSMFData,
 UInt32* aDuration,
 Boolean aAsync)

Parameter
s

[in] aSMFData A pointer to SMF Format 0 encoded midi data.
This data will be examined by the TwSmfOpen
call and if found to be invalid (e.g. not format 0,
or other kinds of encoding errors) an error will be
returned.

 [out] aDuration A pointer to where the duration, in milliseconds,
of the smf data will be stored. This pointer is
allowed to be NULL indicating no value will be
returned.

 [in] aAsync A flag indicating if the playback should be done
synchronously (zero) or asynchronously (non-
zero).

Result errNone – Succeeded

twMidiErrorNullPointer – aResult or aSMFData is NULL

twMidiErrorInvalidFormat – the smf data is improperly formatted

twMidiErrorAllocFailed – there are no more smf handles available

Comments There are a limited number of smf handles available. Use
TwMidiGetLimits to determine the maximum number.

This is a handy helper method to play an SMF encoded block of data from
beginning to end.

Side
Effects

The aSMFData must remain valid during the playback. It is up to the
application to determine how to best do this. Resource data, for
example, can be played without issue as long as the application is still
running.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwSmfOpen

Purpose Create a new TwSmfHandle to an SMF encoded block of data (smf
stream).

Prototype Err TwSmfOpen(TwSmfHandle* aResult,
 UInt8* aSMFData,
 UInt32* aDuration)

Parameter
s

[out] aResult A pointer to where the newly created
TwSmfHandle will be stored.

 [in] aSMFData A pointer to SMF Format 0 encoded midi data.
This data will be examined by the TwSmfOpen
call and if found to be invalid (e.g. not format 0,
or other kinds of encoding errors) an error will be
returned.

 [out] aDuration A pointer to where the duration, in milliseconds,
of the smf data will be stored. This pointer is
allowed to be NULL indicating no value will be
returned.

Result errNone – Succeeded

twMidiErrorNullPointer – aResult or aSMFData is NULL

twMidiErrorInvalidFormat – the smf data is improperly formatted

twMidiErrorAllocFailed – there are no more smf handles available

Comments There are a limited number of smf handles available. Use
TwMidiGetLimits to determine the maximum number.

Side
Effects

The smf handle is allocated and reserved for future playing. Playback
does not begin until TwSmfPlay is called.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwSmfClose

Purpose Close and free an existing smf handle.

Prototype Err TwSmfClose(TwSmfHandle aHandle)

Parameter
s

[in] aHandle The handle to the smf stream to close.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is not a valid smf handle

Comments If the smf stream was playing, the playback is stopped before freeing the
smf handle.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwSmfPlay

Purpose Start playback on an smf stream.

Prototype Err TwSmfPlay(TwSmfHandle aHandle,
 SndSmfOptionsType* aOptions,
 SndSmfChanRangeType* aRange,
 SndCallbackInfoType* aCallback)

Parameter
s

[in] aHandle The handle to the smf stream to play.

 [in] aOptions Optional pointer to playback options. See
SoundMgr.h for the definition. If NULL is passed in
then the entire stream will be played at
maximum amplitude.

 [in] aRange Optional pointer to channel range definition. See
SoundMgr.h for the definition. If NULL is passed in
then all channels will be played.

 [in] aCallback Optional pointer to a callback object. See
SoundMgr.h for the definition. The type of the
callback function “aCallback.funcP” is:

 void (*)(UInt32);

The argument to the callback function is
“aCallback.dwUserData”.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is not a valid smf handle

twMidiErrorAlreadyPlaying – the smf stream is already playing

Comments The aOptions, aRange and aCallback arguments are optional. The only
safe thing to do in the callback function is to call TwSmfPlay to achieve
seemless looping. Any other OS, Library, or application call will have
undefined and likely disastrous results.

Also note that the playback is begun with this call. The application task is
not blocked unlike the PalmOS midi api calls.

Tapwave TwMidi Sound API Reference

Side
Effects

When the playback is completed the callback will be invoked. Note that
this is the only condition where the callback is invoked.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwSmfIsPlaying

Purpose Query the playback status of the smf stream.

Prototype Err TwSmfIsPlaying(TwSmfHandle aHandle,
 Boolean* aIsPlaying)

Parameter
s

[in] aHandle The handle to the smf stream to query.

 [out] aIsPlaying Pointer to a Boolean that will be set to the
current playback status of the stream.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is not a valid smf handle

twMidiErrorNullPointer – aIsPlaying is NULL

Comments If the smf stream is playing at the time of the call then *aIsPlaying is set
to true, otherwise false. Note that the stream may stop playing at any
time, including (conceptually) in the middle of this call. However, the
atomicity of the call is guaranteed.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwSmfStop

Purpose Stop playback on an smf stream.

Prototype Err TwSmfStop(TwSmfHandle aHandle)

Parameter
s

[in] aHandle The handle to the smf stream to stop playing.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is not a valid smf handle

Comments If the smf stream is playing then it is stopped; there is no error returned
if the stream was not already playing.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiOpen

Purpose Create a new midi handle.

Prototype Err TwMidiOpen(TwMidiHandle* aResult)

Parameter
s

[out] aResult A pointer to where the newly created
TwMidiHandle will be stored.

Result errNone – Succeeded

twMidiErrorNullPointer – aResult is NULL

twMidiErrorAllocFailed – there are no more midi handles available

Comments A midi handle is used to do direct access to the midi synthesizer (e.g.
turn on/off individual notes, change voices, etc.). There are a limited
number of midi handles available. Use TwMidiGetLimits to determine how
many are available.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiClose

Purpose Close and destroy a previously created midi handle.

Prototype Err TwMidiClose(TwMidiHandle aHandle)

Parameter
s

[in] aHandle The handle to the previously opened midi
synthesizer.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is invalid

Comments The handle is closed and if the handle was playing anything, the playing is
stopped.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiNoteOn, TwMidiNoteOff

Purpose Turn a midi channel on or off.

Prototype Err TwMidiNote[On,Off](TwMidiHandle aHandle,
 UInt8 aChannel,
 UInt8 aKey,
 UInt8 aVelocity)

Parameter
s

[in] aHandle The handle to the previously opened midi
synthesizer.

 [in] aChannel The midi channel number to turn on/off. The
channel number must be in the range of zero to
15, inclusive.

 [in] aKey The midi key (note) to stop/start playing.

 [in] aVelocity The velocity (volume) of the key to stop/start
playing.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is invalid

twMidiErrorBadParam – aChannel, aKey or aVelocity are invalid

Comments Note that these calls do not take a duration. It is up to the caller to
simulate a duration by timing the calls to these functions.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiProgramChange

Purpose Change the “program” or voice assigned to a midi handle.

Prototype Err TwMidiProgramChange(TwMidiHandle aHandle,
 UInt8 aChannel,
 UInt8 aProgram)

Parameter
s

[in] aHandle The handle to the previously opened midi
synthesizer.

 [in] aChannel The midi channel number to change.

 [in] aProgram The new program (voice) to use.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is invalid

twMidiErrorBadParam – aChannel or aProgram are invalid

Comments Change the program (voice) used by the midi handle. Note that the
program change will be silently ignored for channel 9 (the drum channel).

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiControlChange

Purpose Perform a control change on the midi handle.

Prototype Err TwMidiControlChange(TwMidiHandle aHandle,
 UInt8 aChannel,
 Int32 aControl,
 Int32 aValue)

Parameter
s

[in] aHandle The handle to the previously opened midi
synthesizer.

 [in] aChannel The midi channel number to change.

 [in] aControl The control to change.

 [in] aValue The value of the control.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is invalid

twMidiErrorBadParam – aChannel, aControl or aValue are invalid

Comments This will effect a control change on the given channel. The support
control change values are:

0x01 – modulation
0x07 – channel volume
0x0A – panpot
0x78 – all sound off (aValue is ignored)
0x79 – reset all controllers (aValue is ignored)
0x7B – all notes off (aValue is ignored)
0x65 – rpn msb
0x64 – rpn lsb
0x63 – Nrpn msb
0x62 – Nrpn lsb
0x06 – data entry msb

Please see the midi specification for more information on what these
mean.

Tapwave TwMidi Sound API Reference

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiPitchBend

Purpose Set the pitch bend for a given midi channel.

Prototype Err TwMidiPitchBend(TwMidiHandle aHandle,
 UInt8 aChannel,
 Int32 aValue)

Parameter
s

[in] aHandle The handle to the previously opened midi
synthesizer.

 [in] aChannel The midi channel number to change.

 [in] aValue The value of the bend.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is invalid

twMidiErrorBadParam – aChannel or aValue are invalid

Comments This will effect a pitch bend on the given channel.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

TwMidiSysEx

Purpose Execute a system exclusive message on the midi channel.

Prototype Err TwMidiSysEx(TwMidiHandle aHandle,
 UInt8 aChannel,
 UInt8* aData,
 UInt16 aSize)

Parameter
s

[in] aHandle The handle to the previously opened midi
synthesizer.

 [in] aChannel The midi channel number to change.

 [in] aData The system exclusive message data, in midi file
format.

 [in] aSize The number of bytes of message data.

Result errNone – Succeeded

twMidiErrorInvalidHandle – aHandle is invalid

twMidiErrorBadParam – aChannel or aValue are invalid

Comments This will effect a system exclusive message on the given channel.

Side
Effects

None.

Header TwMidi.h

Tapwave TwMidi Sound API Reference

Examples

This simple example plays a midi file located on a card (error handling is an exercise left to the
reader):

void playMidiFile(Int32 Volume, Int32 VolRefNum, char* Path) {
 TwMidiSetMasterVolume(Volume);

 unsigned char* midiData = readMidiData(VolRefNum, Path);
 if (midiData) {
 UInt32 duration;
 TwSmfType* smfHandle;
 Err err = TwSmfOpen(&smfHandle, midiData, &duration);
 if (!err) {
 err = TwSmfPlay(smfHandle, NULL, NULL, NULL);
 if (!err) {
 // Wait for playback to finish. Note that this is an ARM
 // example, therefore the units to SysTaskDelay are in
 // milliseconds not centiseconds.
 SysTaskDelay(duration + 200);
 }
 TwSmfClose(smfHandle);
 }
 delete midiData;
 }
}

unsigned char* readMidiData(Int32 VolRefNum, char* Path) {
 UInt32 size, nb;
 FileRef ref;
 unsigned char* buf = NULL;
 Err err = VFSFileOpen(VolRefNum, Path, vfsModeRead, &ref);
 if (!err) {
 err = VFSFileSize(ref, &size);
 if (!err) {
 buf = new unsigned char[size];
 if (buf) {
 err = VFSFileRead(ref, size, buf, &nb);
 }
 }
 VFSFileClose(ref);
 }
 return buf;
}

	Copyright
	Background
	Library Data Types
	API
	Examples

