
Tapwave High Performance Games

Tapwave® High Performance Games
Version 1.1a

1

Tapwave High Performance Games

Copyright
© Copyright 2003-2004 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. in the United
States and/or other countries. The Palm logo, HotSync, Palm OS, Palm, Palm Powered, and the Palm Powered logo are registered
trademarks of PalmSource, Inc., and its affiliates. X-Forge is a trademark of Fathammer, Ltd. Java is a registered trademark of
Sun Microsystems, Inc. Windows is a registered trademark of Microsoft Corporation, Inc. ARM is a registered trademark of ARM
Limited. All other brands are trademarks or registered trademarks of their respective owners.

2

Tapwave High Performance Games

1.Overview
This guide provides an overview and reference for creating high performance games on the
Tapwave platform. It is geared towards developers who are creating full-screen games and
who don’t need the standard Palm OS UI widgets.

The Tapwave Native Application (TNA) framework provides an environment for creating high
performance, ARM-native, applications for Tapwave devices.

A Tapwave Native Application consists of two parts:

• A very small 68k stub that launches the ARM-native code on the device.

• The main application logic compiled into ARM-native code.

The Tapwave Native Application framework provides the following capabilities to enable the
development of high-performance, interactive gaming applications:

• The fastest possible code execution.

• Source level debugging via the Palm OS Debugger.

•
relocation, standard C/C++ library, floating point, math library, socket, and zlib.

• Binary compatibility with future Tapwave devices.

The Tapwave Native Application framework requires you to adhere to these parameter:

ocessing input and

drawing to the screen. The framework consists of the following APIs:

Extensive runtime and library support, including true global variables, runtime

• Do not use any standard Palm OS UI widgets from ARM code.

• Do not call any Palm OS functions, except those defined in TwGlue.h.

2.Tapwave Native Application Framework
The Tapwave Native Application framework provides the easiest way to create a high-
performance game on the Tapwave platform. By using this framework, an application can
register to receive system events and can respond appropriately by pr

3

Tapwave High Performance Games

TwAppStart

Purpose Initialize the Tapwave Native Application framework

Prototype Err TwAppStart (Boolean (*handler)(EventType*
event));

Parameters [in]
handler

The application event handler

Result ErrNone

Pre-Conditions An application should not call any Palm OS user interface APIs
before calling this function.

Comments This function creates a blank window, installs the event handler for
the window, and makes the window the active window. The
application can access the window by using
WinGetActiveWindow() inside the event handler. Once the
framework is started, the event handler must be ready to receive
events from the system. If an application needs a specific display
layout, it should perform the appropriate setup in advance to avoid
unnecessarily redrawing the screen.

WARNING: The event handler definition must include a special
compiler attribute SYSTEM_CALLBACK, which is defined in
<TwDefs.h>. This attribute specifies that the function needs a
special prolog to restore the global pointer (GP). For Metrowerks
CodeWarrior 9.2, the attribute is defined as
__declspec(pace_native_callback). If the compiler does not
support this feature, you must write the proper thunk to handle
this. The implementation details of this feature are beyond the
scope of this document.

Header TwRuntime.h (included by Tapwave.h)

4

Tapwave High Performance Games

Sample // using full screen landscape mode
Int32 timeout = 0;
SysSetOrientation(sysOrientationLandscape);
PINSetInputAreaState(pinInputAreaHide);
StatHide();
TwAppStart(&AppHandleEvent);
TwAppRun(&timeout);
TwAppStop();

5

Tapwave High Performance Games

TwAppStop

Purpose Tear down Tapwave Native Application framework

Prototype Err TwAppStop (void);

Result ErrNone

Post-Conditions An application should not call any Palm OS user interface APIs after
calling this function.

Header TwApp.h (included by Tapwave.h)

Sample Int32 timeout = 0;
TwAppStart(&AppHandleEvent);
TwAppRun(&timeout);
TwAppStop();

6

Tapwave High Performance Games

TwAppRun

Purpose Run Tapwave Native Application framework

Prototype Err TwAppRun (Int32 * timeout);

Parameters [in]
timeout

The pointer to a 32-bit integer that controls the event
loop speed. The timeout is in milliseconds.

Result ErrNone

Pre-Conditions An application should only call this API after TwAppStart and
before TwAppStop.

Comments This function runs the standard Palm OS event loop. Alternately, you
could write your own event loop, although this one is provided to
help simplify your code.

This function returns upon the first unhandled appStopEvent.

WARNING: Although the timeout value is specified in milliseconds,
the actual response rate is in 10ms increments due to various
hardware and software limitations. The same rule also applies to
SysTaskDelay.

Header TwApp.h (included by Tapwave.h)

Sample Int32 timeout = 0;
TwAppStart(&AppHandleEvent);
TwAppRun(&timeout);
TwAppStop();

The following illustrates a typical Tapwave Native Application event handler.

SYSTEM_CALLBACK Boolean
AppHandleEvent(EventType * event)
{
 switch (event->eType)
 {

7

Tapwave High Performance Games

 case winDisplayChangedEvent:
 {
 RectangleType bounds;
 // NOTE: update window bounds to match the new display bounds.
 WinGetBounds(WinGetDisplayWindow(), &bounds);
 WinSetBounds(WinGetActiveWindow(), &bounds);
 // TODO: update rest of application logic
 return true;
 }
 case winExitEvent:
 // NOTE: application should pause on this event,
 // such as stop background sound. Control of the device
 // is about to switch to other code, and no events
 // will be received until the control is resumed.
 // WARNING: application has to return false here to give the
 // system a chance to fix the PINS state, or the application can
 // fix the PINS state by itself.
 return false;
 case winEnterEvent:
 // WARNING: application has to return false here to give the
 // system a chance to fix the PINS state, or the application can
 // fix the PINS state by itself.
 return false;
 case nilEvent:
 // NOTE: games should perform rendering on this event.
 // Timing-sensitive games should double-check
 // the wall clock time using TimGetTicks().
 return true;
 case frmUpdateEvent:
 // NOTE: system sends this event to force the application
 // to redraw itself.
 return true;
 case appStopEvent:
 // NOTE: save application state and get ready for quit.
 // If application refuses to quit, it should return true.
 return false;
 case keyDownEvent:
 // NOTE: this is a general key down event. Applications should
 // only return true if they handle the specific key in the event.
 return false;
 case keyUpEvent:
 // NOTE: this is a general key up event. Applications should
 // only return true if they handle the specific key in the event.
 return false;
 case penDownEvent:
 // NOTE: the application sees this event only if the pen is
 // down inside the application window, otherwise this pen is
 // handled by the operating system.
 return false;

8

Tapwave High Performance Games

 case penMoveEvent:
 // NOTE: application can use EvtGetPen() to poll the pen position
 // until the pen is up instead of waiting for penMoveEvent.
 return false;
 case penUpEvent:
 // NOTE: application sees this event only if it receives
 // a matching penDownEvent first. However, the application should
 // also guard against spurious wrong event dispatching.
 return false;
 default:
 // NOTE: TNA applications normally ignore other event types.
 return false;
 }
}

3.Tapwave Native Application APIs
Tapwave Native Applications have access to a subset of PalmOS 5.x APIs and most of the
Tapwave APIs. These APIs are 32-bit native APIs, not PACE wrapper functions. They are all
defined in the TwGlue.h header file.

In order to access these APIs, the header file must be compiled with __PALMOS_ARMLET__
macro defined. The Metrowerks CodeWarrior 9.2 compiler does this automatically.

4.Creating a Tapwave Native Application for a
Tapwave Device
To create a Tapwave Native Application, you need CodeWarrior 9.2 and the Tapwave SDK. If
you don’t have either, visit the Tapwave Developer Zone for more information.

The GameStarter sample code is a great place to start. This sample includes the following
files:

Application.c The 68k source file.

GameStarter.rcp The application’s resources. This example only includes the
application’s icons and a “ROM Incompatible” alert.

Application.rcp This resource maps the entry point into the x86 code resource. This is
only necessary for running/debugging your application on the Palm
Simulator. The name of your DLL (minus the .dll extension) is included
in this file. You’ll need to change this name if you change the name of
your DLL.

GameStarter.c The source file for the ARM-native code.

9

http://www.tapwave.com/developers

Tapwave High Performance Games

Startup.cpp This file defines the real entry point into the ARM code. From here you
can fine tune various hooks including relocation support and a floating
point.

Application.c contains a small 68k stub whose only job is to launch the ARM code on the
device or x86 code on the Palm Simulator. Below is a sample showing how to launch the ARM
code resource:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{
 UInt32 res = errNone;
 NativeFuncType* entry;

 if (cmd == sysAppLaunchCmdNormalLaunch) {
 if (!RomVersionCompatible(launchFlags)) {
 res = TwLoadModule(0, 0, 0, 1,
 twLoadFlagTNA|twLoadFlagQuickRun,
&entry);
 }
 }

 return res;
}

GameStarter.c contains the main application event loop and the game engine. This example
shows only the core code necessary to run properly:

SYSTEM_CALLBACK Boolean GameHandleEvent(EventType* eventP)
{
 Boolean handled = false;
 RectangleType bounds;

 switch (eventP->eType)
 {
 case winDisplayChangedEvent:
 WinGetBounds(WinGetDisplayWindow(), &bounds);
 WinSetBounds(WinGetActiveWindow(), &bounds);
 handled = true;
 break;

 case nilEvent:
 case frmUpdateEvent:
 // Put update code here
 handled = true;
 break;
 }

10

Tapwave High Performance Games

 return (handled);
}

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{
 Int32 timeOut = TimeUntillNextPeriod();

 if (cmd == sysAppLaunchCmdNormalLaunch)
 {
 // Get the screen to a state we want.
 SysSetOrientation(sysOrientationLandscape);
 PINSetInputAreaState(pinInputAreaHide);
 StatHide();

 // Set everything up.
 TwAppStart(&GameHandleEvent);

 // Run event loop.
 TwAppRun(&timeOut);

 // Tear everything down.
 TwAppStop();
 }

 return 0;
}

5.Tapwave Native Application Runtime
The Tapwave Native Application runtime provides simple and convenient APIs for managing
Tapwave Native Application modules (or PACE Native Object modules). You should use these
APIs from your 68k code to load your ARM code. The runtime consists of the following APIs:

TwLoadModule

Purpose Load a PACE Native Object module

Prototype Err TwLoadModule (UInt32 dbType, UInt32 dbCreator,
UInt32 rsrcType, UInt32 rsrcID, UInt32 flags,
NativeFuncType** entry);

Parameters [in]
dbType

Database type

11

Tapwave High Performance Games

 [in]
dbCreator

Database creator

 [in]
rsrcType

Resource type

 [in]
rsrcID

Resource ID, which must be <= 0xFFFF

 [in]
flags

Various flags that control the module loading

twLoadFlagTNA load and initialize a TNA module

twLoadFlagQuickRun load a PACE Native Object
module, run it, and unload it

 [out]
entry

Returns the entry point to the loaded PACE Native
Object

Result errNone
sysErrParamErr
memErrNotEnoughSpace
memErrChunkNotLocked
sysErrLibNotFound

12

Tapwave High Performance Games

Comments If both the dbType and dbCreator are zero, this function loads the
module using SysCurAppDatabase.

If rsrcType is zero, it is assumed to be 'ARMC' on ARM devices, and
'SIMC' on Palm OS Simulator. If the 'ARMC' code resource is missing,
the runtime tries to load the 'ARMZ' code resource, which is assumed
to be a gzipped version of the 'ARMC' resource. You can gzip your
‘ARMC’ resource and save about 50% of your storage space.

The code in the resource is copied/expanded to the dynamic heap
and relocation is performed. Larger code resources leave less
memory available for the application’s use.

The runtime uses reference counting to manage loaded libraries.
Multiple loads of the same library use the same entry point. The
global state of a library is kept intact between multiple
PceNativeCall() calls.

If the debugger is present, this function also automatically notifies
the debugger about the newly loaded module.

Header TwRuntime.h (included by Tapwave.h)

Sample NativeFuncType* entry;

TwLoadModule(0, 0, 0, 1,

twLoadFlagTNA|twLoadFlagQuickRun, &entry);

13

Tapwave High Performance Games

TwUnloadModule

Purpose Unload a PACE Native Object module

Prototype Err TwUnloadModule (NativeFuncType* entry);

Parameters [in]
entry

PACE Native Object entry point, which must be
previously returned by TwLoadModule.

Result errNone
sysErrLibNotFound

Comments The runtime uses reference counting to manage loaded modules.
Applications should maintain balanced load and unload calls.

If the debugger is present, this function also notifies the debugger
regarding the unloaded module.

Header TwRuntime.h (included by Tapwave.h)

Sample NativeFuncType* entry;

TwLoadModule(0, 0, 0, 1, 0, &entry);
PceNativeCall(entry, NULL);
TwUnloadModule(entry);

14

Tapwave High Performance Games

TwFindModule

Purpose Find PACE Native Object module for a given PC.

Prototype Err TwFindModule (void* pc, TwModuleInfo* info,
UInt32 size);

Parameters [in] pc Program counter to query.

 [out]
info

Returns module info if any.

 [in]
size

The sizeof(TwModuleInfo).

Result errNone
sysErrLibNotFound

Comments This function only finds a module that was loaded using
TwLoadModule.

Applications should only use this API for debugging and profiling
purpose. If you need to call PceNativeCall, then you must load
the module using TwLoadModule first.

If the size is smaller than sizeof(TwModuleInfo), only partial
data is returned.

If the size is larger than sizeof(TwModuleInfo), the extra space
is filled with zeros.

Header TwRuntime.h (included by Tapwave.h)

6.Creating a Tapwave Native Application for the
Palm OS Simulator
You can also create a Tapwave Native Application for Palm OS Simulator. These are called
Simlets. To create a Simlet, you’ll need Visual C++ 6.0 with SP5 and the Tapwave SDK. A
Simlet consists of two parts:

15

Tapwave High Performance Games

• The Tapwave Native Application for device

• A Windows DLL that contains the compiled x86 code.

The advantage of creating a Simlet is that you can debug your code quickly using the Palm OS
Simulator. Note that you should still test your application thoroughly and frequently on the
device because there are many differences between the Simlet and device runtime
environments.

The GameStarter sample code includes the following files necessary to build the DLL:

GameStarter.dsw Visual Studio workspace file.

GameStarter.dsp Visual Studio project file.

7.Testing on a Tapwave device
Testing on a device is straightforward. Build the project in CodeWarrior 9.2 and transfer it to
a device.

The easiest ways to transfer it to a device is to copy it to the /PALM/Launcher/ folder on an
SD card. When you insert the card in the device, your application shows up in the Home
screen. Just tap the icon to run it.

You can use the Palm Universal OS Debugger to perform source level debugging of your code
on the device. The Palm Universal OS Debugger can also be used to transfer your PRC to the
device.

8.Testing on the Palm OS Simulator
Testing on the Simulator is a bit more complicated but it allows you to perform source-level
debugging of your code from Visual C++.

First, it’s helpful to understand the debugging cycle on the Simulator. Debugging on the
Simulator involves 4 components: the Palm OS Simulator, Visual C++, your application’s PRC,
and the Simlet DLL.

Traditionally you need to place your DLL in the Simulator folder and then load your PRC into a
running instance of the Simulator. The PRC is necessary because it contains the 68k code that
launches the x86 code in the DLL. The DLL is necessary because it contains the native x86
code that is executed when you launch your application. Note that you only need to re-
compile your PRC under two conditions: when you change the 68k code or when you make
changes to your resources. However, since most of your code changes will be to the DLL code
(rather than the 68k code) your PRC will not change, in most cases. So you won’t need to use
CodeWarrior very often to build a Simlet.

You can automate the process of copying the DLL code and the PRC by using some tricks with
CodeWarrior, the Palm OS Simulator, and Visual C++.

16

Tapwave High Performance Games

1 . Go to the Simulator\AutoLoad folder. If this folder doesn’t exist, then create it.

The contents of this folder are loaded into the Simulator each time the Simulator is
launched or reset. You should place your PRC into this folder.

2 Change the output directory in CodeWarrior so that your application builds are always
placed in the AutoLoad folder. Open your project settings and under “Target Settings,”
change the “Output Directory” to the “AutoLoad” folder. Be sure to modify the 68k target
and NOT the ARM target.

3 Change the DLL Output directory in Visual C++ to the Simulator folder. Go to “Project
Settings”, select “Link”, select the “General” category, and change the “Output file
name” to include the path of the Simulator folder.

17

Tapwave High Performance Games

4 Update Visual C++ to enable debugging.

a Select “Settings” from the “Project” menu.

b Click the “Debug” tab and select the “General” category.

c Set the “Executable for debug session” path to the Simulator executable.

d Set your working directory path to the Simulator folder.

18

Tapwave High Performance Games

5 Make sure your project is set to load symbols for your DLL. By default, the VC++ debugger
only loads symbols for the Simulator. By adding your DLL, you can debug your code.

a Select “Settings” from the “Project” menu.

b Click the “Debug” tab and select the “Additional DLLs” category.

19

Tapwave High Performance Games

You’re now ready to debug!

Build your PRC in Codewarrior, then switch to Visual C++ and start debugging from the “Build”
menu (F5). This builds your project and launches the simulator for you. Select your
application from the launcher and you should be up and running!

9.Navigating on the Palm OS Simulator
To navigate through the Simulator you need to attach a game controller to your PC.

We recommend using the Microsoft Sidewinder Game Pad Pro. It has buttons for the analog
controller, action keys, trigger keys, function, and home buttons. Most USB analog game pads
should also work.

You can test the game controller’s performance/configuration by launching the “Navigation”
application. This application shows the analog controller location as well as the state of all
other keys. If you have problems getting the analog controller working, or prefer using the
keyboard, you can use the following keyboard mappings in the Simulator:

Key Combination Action on the Simulator

Alt-A Action A

Alt-B Action B

Alt-C Action C

Alt-D Action D

20

http://www.activewin.com/reviews/hardware/joysticks/microsoft/game_pad_pro/index.shtm

Tapwave High Performance Games

Alt-L Left Trigger

Alt-R Right Trigger

Alt-F Function Button

Alt-H Home Button

Note that the Simulator supports multiple key presses and key-up.

10.Managing Game Data
There are two different models you can use to manage your game’s data files, depending on
the size of the files.

Note that the game data files should be marked as read/write in both models.

10.1.Model A

The first model is to embed all of your game data (sounds, bitmaps, etc.) directly in your
application’s PRC file or PDB file. The advantage of this model is that it keeps the download
and installation of your application simple. We suggest developers use this model if their
application is relatively small (i.e.: less than 500k).

10.2.Model B
The second model is to separate your game data into separate files so that your PRC only
includes the game’s compiled code. We suggest you use this model if you have a large amount
of game data – this ensures the most efficient use of system memory.

If you use this model, you must also create an installer to ensure that files are installed in the
correct location. See “Installing Your Game” for more information on installing files.

Use the following guidelines for managing your game’s data files:

All game data should be stored on a VSF volume (either on an external memory card or on the
internal card) using the following path: "/PALM/Programs/<prcdatabasename>-
<creatorid>/", where <prcdatabasename> is the Data Manager's database name of the
main application PRC file; the appl file.

For instance, if your application’s database name is “Application” and the creator id is "Strt”,
then the path would be “/PALM/Programs/Application-Strt/”. The following
functions, defined in TwOSAdditions.h, are provided to help facilitate path creation:
TwGetDBDataDirectory and TwGetPRCDataDirectory.

You can override the default path name by adding a ‘Twdp’ resource with ID #0 to your main
application file. This resource should specify the path to use in place of

21

Tapwave High Performance Games

“/PALM/Programs/<prcdatabasename>-<creatorid>/”. You should only override this
if you need to share data between applications.

Following this convention reduces clutter and allows the Tapwave launcher to copy game data
correctly between the internal memory and an external memory card. The game data follows
the game PRC if the PRC is moved from internal memory to external memory and visa versa.
Note that all data in the application’s directory is deleted when the application is deleted
through the Tapwave launcher. This could have repercussions if you share data amongst
applications.

Game preferences and saved game states should still be stored using the Palm OS Preferences
or Data Manager APIs, the above information only applies to read-only game data such as
graphics and sound files.

11.Installing Your Game
There are two ways to distribute and install your game depending on which model you use for
managing your game’s data files.

11.1.Model A

If you use Model A from above, then distributing and installing files is simple. You can
distribute your PRCs and PDBs as separate files. In this case the user needs to double-click all
install files to queue them for installation. Alternately, you can create an installer that calls
the Install Aide API functions for installing PRCs and PDBs (e.g: PltInstallFile).

11.2.Model B
If you use Model B from above, then you must create an installer.

First, install your PRC and PDB files, as in Model A, using the appropriate Install Aide API (e.g:
PltInstallFile). Then install your game’s data files using the new
PlmSlotInstallFileToDir API, which is included in the Tapwave desktop as part of
Install Aide.

See the “PlmSlotInstallFileToDir” section in the Tapwave Programmer’s Reference for more
information. Also see the simple installer for samples that demonstrate how to use this API.

22

http://www.tapwave.com/developers/members/TwReference/TWProgRef83.html

Tapwave High Performance Games

Appendix A - Important Runtime Features
There are several important runtime features developers must be aware of while developing
TNA applications.

• SYSTEM_CALLBACK
The declarative macro SYSTEM_CALLBACK must be used for all callback function
implementations. It is used to inform the compiler to generate the proper function prolog to
set-up the global pointer register. Failing to do this will cause the callback function to crash
immediately. For CW9.2 and CW9.3, this macro is expanded to
__declspec(pace_native_callback).

• MSL
Tapwave SDK provides complete C/C++ runtime library support through Metrowerks Standard
Library (MSL), which Tapwave licensed from Metrowerks. MSL provides standard C/C++
features, such as printf(), malloc(), fopen(), open(), opendir(), operator new(). There are
some glue functions defined inside Startup.cpp which connect the MSL to the underlying
PalmOS APIs. Advanced developers can customize this glue for their own purpose.

• File Path
The above mentioned MSL uses Windows file path to specify different volumes. For example,
fopen(“C:/foo”, “r”) opens file “foo” at the root directory of internal volume. “A:” stands for
the first volume on the left slot of Zodiac. “B:” stands for the first volume on the right slot.
“C:” standards for the volume on internal memory filesystem (MemFS).

23

	Copyright
	Overview
	Tapwave Native Application Framework
	Tapwave Native Application APIs
	Creating a Tapwave Native Application for a Tapwave Device
	Tapwave Native Application Runtime
	Creating a Tapwave Native Application for the Palm OS Simula
	Testing on a Tapwave device
	Testing on the Palm OS Simulator
	Navigating on the Palm OS Simulator
	Managing Game Data
	Model A
	Model B

	Installing Your Game
	Model A
	Model B

	Appendix A - Important Runtime Features
	SYSTEM_CALLBACK
	MSL
	File Path

