
Tapwave, Inc. Proprietary

Tapwave®

Tapwave Multiplayer API Reference

Current Version Date Author
REV 0.3 02/27/2004 EM

Revision History

Version Date Description Author
REV 0.1 12/14/2003 INITIAL REVISION EM

REV 0.2 02/08/2004 UPDATE FOR BETA SDK RELEASE EM

REV 0.3 02/27/2004 UPDATE FOR FINAL RELEASE EM

© Copyright 2003 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. Palm
OS, the Palm logo, Graffiti, HotSync, and PalmSource are registered trademarks of Palm, Inc. Palm, Palm
Powered, and the Palm Powered logo are trademarks of Palm, Inc. X-Forge is a trademark of Fathammer, Ltd.
Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft
Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

Background

The purpose of the multiplayer API is to allow applications to start multiplayer games in a way that is
easier for the gamer. It is not just an API, but a bluetooth service that runs on the device to handle
incoming bluetooth multiplayer gaming invitations.

Using just the BtLib APIs, the app can use the Host/Join model to start a game where both players must be
running the game and find their respective menus to properly initiate a game. With the TwMp APIs the
game just needs to be present on the device or an inserted SD card and it will be launched by the TwMp
service in order to start the game. If someone wants to host a multiplayer game with TwMp they just start
the game, find devices to invite, and those devices are asked to join the game. The standard PalmOS BtLib
APIs do not allow inviting someone to play a game that is not currently running the game (Invitees would
just see a connecting dialog, with no explanation). Refer to the TwMpTest sample application for an
example of an app that uses the TwMp APIs.

Multiplayer Game Process

The host enters the game and decides to host the game. All players press their bluetooth button to make the
devices discoverable. The host finds the players he/she wants to invite to join the game via bluetooth
inquiry and name discovery. The selected devices receive an invitation to join the game that they can either
accept or reject. If the invitation is accepted, the game is launched with a PalmOS feature set so that the
game can detect that it was launched for a multiplayer game.

Constants

#define kTwMpName "Tapwave Multiplayer Library"
#define sysFileCTwMp 'twMU'
#define twMpFtrCreator sysFileCTwMp

/*
 * Error Codes
 */
#define twMpErrNoError (0)
#define twMpErrError (twMpErrorBase | 0xFF)
#define twMpErrNotOpen (twMpErrorBase | 0x01)
#define twMpErrNotHost (twMpErrorBase | 0x02)
#define twMpErrInvitationRejected (twMpErrorBase | 0x03)
#define twMpErrHost (twMpErrorBase | 0x04)
#define twMpErrOutOfMemory (twMpErrorBase | 0x05)
#define twMpErrNotEnough (twMpErrorBase | 0x06)
#define twMpErrInProgress (twMpErrorBase | 0x07)
#define twMpErrParamError (twMpErrorBase | 0x08)
#define twMpErrTooMany (twMpErrorBase | 0x09)
#define twMpErrPending (twMpErrorBase | 0x0A)
#define twMpErrNoAccepted (twMpErrorBase | 0x0B)
#define twMpErrLeftGame (twMpErrorBase | 0x0C)
#define twMpErrDisconnected (twMpErrorBase | 0x0D)
#define twMpErrNotHostOrGuest (twMpErrorBase | 0x0E)
#define twMpErrAlreadyOpen (twMpErrorBase | 0x0F)
#define twMpErrNoConnection (twMpErrorBase | 0x10)
#define twMpErrBadObjectVersion (twMpErrorBase | 0x11)
#define twMpErrUIBusy (twMpErrorBase | 0x12)

#define twMpErrAlreadyConnected (twMpErrorBase | 0x13)
#define twMpErrNotFound (twMpErrorBase | 0x14)
#define twMpErrDisinvited (twMpErrorBase | 0x15)
#define twMpErrNotLaunched (twMpErrorBase | 0x16)

/*
 * Feature Numbers
 */

//
// Feature exists if the app was launched by the multiplayer library. It must be checked by an application
// on application launch with sysAppLaunchCmdNormalLaunch to see if the app was launched by the
// multiplayer
// library. The feature stores a pointer to a TwMpLaunchParamsType structure (68K Big Endian byte
// order)
//

#define twMpFtrNumMultiplayerLaunch 1

// This feature stores the version of the library.
#define twMpFtrNumVersion 2

/*
 * Launch Codes
 */

//
// The OS does not allow reservation of app launch codes.
// So in order to avoid conflict with any potential custom launch codes you may want to add to your
// application we set our base for the custom launch codes you need to support if you use this API
// to sysAppLaunchCmdCustomBase + 0x6FFF, or 0xEFFF. The app will be sublaunched with this code to
// allow replacement of the Invitation dialog.
//
#define twMpAppLaunchCmdCustomBase (sysAppLaunchCmdCustomBase + 0x6FFF)

// Allow the app to replace the default UI for asking the user
// if he/she wants to join the game.
#define twMpAppLaunchCmdAskUser (twMpAppLaunchCmdCustomBase)

/*
 * Misc. Constants
 */

// Results returned from PilotMain when sublaunched with twMpAppLaunchCmdAskUser
// to override the default invitation UI.
#define twMpResultAsk (0) // Default invitation dialog will be displayed.
#define twMpResultAccept (1) // Invitation Accepted (app will be launched by TwMp)
#define twMpResultDecline (2) // Invitation Declined

// You can have 8 devices in a piconet which means 7 other players
#define kTwMpMaxOtherPlayers (7)

Data Types and Structures

// Possible player states

// This player is hosting the game.
#define twMpPlayerHosting 1

// Waiting for bluetooth connection to get in place
#define twMpPlayerWaiting 2

// Connected to device looking for Multiplayer service
#define twMpPlayerAclConnected 3

// Connected to service. Player being asked to join the game.
#define twMpPlayerConnected 4

// Player has accepted the game invitation
#define twMpPlayerAccepted 5

// Player has declined the game invitation
#define twMpPlayerDeclined 6

// Conection to bluetooth device failed
#define twMpPlayerFailed 7

typedef UInt32 TwMpPlayerStateEnum;

// Update the connection status of a player
#define twMpEventPlayerState 1

// Game has been canceled. Or if you are a guest, you have been
// removed from the game.
// IMPORTANT: the btlib is left open by the multiplayer library
// so that the ACL links can be left in place. This means you do
// not have to call BtLibOpen to use the BtLib APIs. A call to TwMpClose
// will close the BtLib for the multiplayer library. Since the BtLib
// keeps an open count you also need to close the library for every time
// that it is opened independently by the application as well.
#define twMpEventGameCanceled 2

// For non-hosts, Initiate listener sockets and advertise them
// so the host can connect to them for the game when it receives
// the twMpEventHostStartGameEvent.
// IMPORTANT: the btlib is left open by the multiplayer library
// so that the ACL links can be left in place. This means you do
// not have to call BtLibOpen to use the BtLib APIs. A call to TwMpClose
// will close the BtLib for the multiplayer library. Since the BtLib
// keeps an open count you also need to close the library for every time
// that it is opened independently by the application as well.
#define twMpEventGuestStartGame 3

// Host can initiate the game. All slaves should have their listeners
// and only the ACL links to devices still exist. Comes with a list
// of addresses.
// IMPORTANT: the btlib is left open by the multiplayer library
// so that the ACL links can be left in place. This means you do
// not have to call BtLibOpen to use the BtLib APIs. A call to TwMpClose
// will close the BtLib for the multiplayer library. Since the BtLib

// keeps an open count you also need to close the library for every time
// that it is opened independently by the application as well.
#define twMpEventHostStartGame 4

// ARM aligned name structure
typedef struct _TwMpPlayerNameType
{
 UInt8* name;
 UInt32 nameLength;
} TwMpPlayerNameType;

#define twMpAskUserParamTypeVersion (1)
// Param structure passed into PilotMain sublaunch to replace
// invitation dialog.
typedef struct _TwMpAskUserParamType
{
 UInt32 version;
 TwMpPlayerNameType hostName; //Name of game host.
} TwMpAskUserParamType;

#define twMpLaunchParamsTypeVersion (1)
// Structure stored in twMpFtrNumMultiplayerLaunch feature number
typedef struct _TwMpLaunchParamsType
{
 UInt32 version;
 // If fromCard is true then volRefNum and path are valid, otherwise not.
 Boolean fromCard;
 UInt8 reserved[3]; // padding
 UInt16 volRefNum; // volume app was stored on
 UInt8 reserved1[2]; // padding
 const Char* path; // path of the prc
} TwMpLaunchParamsType;

// Info on a specific player
typedef struct _TwMpPlayerInfoType
{
 UInt32 size; // Caller MUST set this to sizeof(TwMpPlayerInfoType)
 TwMpPlayerStateEnum state; // State of the player
 UInt32 reason; // Reason if state is twMpPlayerFailed 16 bit error code, 32 for alignment
 TwMpPlayerNameType name; // Name of the player,NEEDS TO BE INITIALIZED PRIOR

 // TO CALLING TwMpGetPlayerInfo().
} TwMpPlayerInfoType;

typedef struct _TwMpEventType{

 UInt32 version;

 TwMpEventEnum event;

 union
 {
 // Event: twMpEventPlayerState
 struct
 {
 TwMpPlayerStateEnum newState; //updated player state

 //16 bit error code, 32 bits for structure alignment
 UInt32 reason; //reason for transition to a state (for twMpPlayerFailed)
 BtLibDeviceAddressType bdAddr;
 } state;

 // Event: twMpEventHostStartGame
 struct
 {
 // List of accepted players
 BtLibDeviceAddressType hostAddr;
 BtLibDeviceAddressType guestAddrs[kTwMpMaxOtherPlayers];
 UInt32 numGuests;
 } acceptedPlayers;

 // Event: twMpEventGuestStartGame
 BtLibDeviceAddressType hostAddr;

 }eventData;

} TwMpEventType;

PalmOS Launch Codes

sysAppLaunchCmdNormalLaunch
Purpose This is the standard PalmOS launch code.

Comments This launch code is mentioned because whenever an application that supports
TwMp is launched it needs to check for the presence of the
twMpFtrNumMultiplayerLaunch feature to determine if it was launched by TwMp
or not. The feature stores a pointer to a TwMpLaunchParamsType structure (68K
Big Endian byte order)

Header SystemMgr.h

twMpAppLaunchCmdAskUser
Purpose A game will be launched with this launch code to allow a game to replace the default

invitation dialog with its own.

Parameters cmdPBP This argument to PilotMain points to a TwMpAskUserParamType
structure containing the hosting device name.

Comments An app should only handle this launch code if it wants to replace the invitation UI.
This is a sub-launch of PilotMain, so it should be treated like a subroutine rather than
an asynchronous event. Put up UI to allow the user to accept or reject a game
invitation. If the user rejects the invitation then PilotMain should return
twMpResultDecline. If the user accepts the invitation then PilotMain should return
twMpResultAccept. If twMpResultAccept is returned then the game is subsequently
launched by TwMp with the sysAppLaunchCmdNormalLaunch launch code.

Header TwMp.h

API Calls

TwMpOpen
Purpose Open the multiplayer service

Prototype Err TwMpOpen(void)

Result twMpErrNoError.

Comments Every call to TwMpOpen must have a corresponding call to TwMpClose or there is
a risk of resource leak and the bluetooth library being left open causing bluetooth to
not work properly for the rest of the system on application exit.

Header TwMp.h

Sample TBD

TwMpClose
Purpose Close the Multiplayer service

Prototype Err TwMpClose(void)

Result twMpErrNoError

Comments Every call to TwMpOpen must have a corresponding call to TwMpClose or there is
a risk of resource leak and the bluetooth library being left open causing bluetooth to
not work properly for the rest of the system on application exit.

Header TwMp.h

Sample TBD

TwMpHostGame
Purpose Prepare to host a multiplayer game.

Prototype Err TwMpHostGame(UInt32 creator, TwMpProcPtr callbackP, UInt32 refcon)

Parameters creator
[in]

The creator ID of the application that is hosting a multiplayer game.

http://www.palmos.com/dev/support/docs/palmos/ReferenceTOC.html

 callbackP
[in]

The callback function pointer for status updates about the multiplayer
game formation process.

 refcon [in] Reference context. User defined data to be passed as an argument to
the callback function.

Result twMpErrNoError – No Error

twMpErrNotOpen - Multiplayer library not open.

twMpErrOutOfMemory – not enough memory to complete the call.

btLibErrBusy – the Bluetooth Library is in use by serial VDRV

btLibErrRadioInitFailed – Bluetooth initialization failure.

btLibErrFailed – BtLibPiconetCreate called with piconet already created.

Comments This function calls BtLibOpen and BtLibPiconetCreate. If you are using the
bluetooth library then you must make sure that the piconet is destroyed and there are
no existing ACL links to other devices. It is important to make sure that the callback
function is declared using the SYSTEM_CALLBACK specifier to make sure your
global variables are available in the callback function.

Header TwMp.h

Sample TBD

TwMpHostInvitePlayer
Purpose Invite a bluetooth device to play a game

Prototype Err TwMpHostInvitePlayer(BtLibDeviceAddressType* bdAddrP)

Parameters bdAddrP
[in]

Bluetooth device address

Result twMpErrPending – Results will be returned via callback events.

twMpErrNotOpen - Multiplayer library not open.

twMpErrParamError – bdAddrP is NULL

twMpErrNotHost – Only Hosts can call this API.

twMpErrTooMany – Already have the maximum number of connections in place or
pending.

twMpErrOutOfMemory – not enough memory to complete the call.

twMpErrInProgress – A link is already in progress to this device..

twMpErrAlreadyConnected – This player has already accepted an invitation

Comments This call starts the process of adding a player to the game.

Events twMpEventPlayerState – callback is called with this event whenever the
state of a device changes.

Header TwMp.h

Sample TBD

TwMpGetPlayerInfo
Purpose Get Information about a player.

Prototype Err TwMpGetPlayerInfo(BtLibDeviceAddressTypePtr bdAddrP,
TwMpPlayerInfoType* infoP)

Parameters bdAddrP
[in]

Bluetooth device address.

 infoP
[out]

Pointer to Info structure. You must fill in the name structure with
space for the name to be filled in.

Result twMpErrNoError – Info retreived successfully

twMpErrNotOpen - Multiplayer library not open.

twMpErrParamError – Parameter error.

twMpErrNotFound – No information on that device.

Comments In the infoP structure you can set the friendly name pointer and length to zero and all
the other data except the name will be returned without error.

Header TwMp.h

Sample TBD

TwMpGuestAcceptInvitation
Purpose Called by an application when it is launched by the Multiplayer service after a game

invitation is accepted by a player to signal that the invitation has been accepted.

Prototype Err TwMpGuestAcceptInvitation(TwMpProcPtr callbackP, UInt32 refCon)

Parameters callbackP
[in]

The callback function pointer for status updates about the multiplayer
game formation process. .

 refCon
[in]

The time when the mute is canceled. Use zero to mute indefinitely.

Result twMpErrNoError – Invitation accepted. Future updates on all devices in the game
will be updated through callback events.

twMpErrNotOpen - Multiplayer library not open.

twMpErrHost – Host cannot call this API

twMpErrNoConnection – No connection to host device.

Comments An application can tell whether it was launched by the multiplayer app if the
twMpFtrNumMultiplayerLaunch exists on a sysAppLaunchCmdNormalLaunch. It
is important to make sure that the callback function is declared using the
SYSTEM_CALLBACK specifier to make sure your global variables are available in
the callback function.

Events twMpEventPlayerState – callback is called with this event whenever the state of a
device changes.

Header TwMp.h

Sample TBD

TwMpHostDisinvitePlayer
Purpose Host disinvites player from the game.

Prototype Err TwMpHostDisinvitePlayer(BtLibDeviceAddressType* bdAddrP)

Parameters bdAddrP
[in]

Bluetooth device address.

Result twMpErrPending – Disinvite started, device updates will be returned through a
callback.

twMpErrNotOpen - Multiplayer library not open.

twMpErrNotHost– Only Host can call this API.

twMpErrParamError – bdAddrP is NULL.

twMpErrInProgress – ACL link in progress cannot be canceled.

twMpErrDisconnected – Device already disconnected.

twMpErrHost – Attempted to disinvite yourself, not allowed.

twMpErrNotFound – Device not in the list of invited players.

Comments

Header TwMp.h

Sample TBD

TwMpHostStartGame
Purpose Start the game.

Prototype Err TwMpHostStartGame(void)

Result twMpErrPending – Starting the game, updates sent through callback events

twMpErrNotHost – Only a host can call this API.

twMpErrNoAccepted – No accepted players, cannot start game.

Comments Guests will receive their final event twMpEventGuestStartGame to create listener
sockets and advertise them. Then a the host will get a final callback with event
twMpEventHostStartGame that has a list of the devices in the game.. These
callbacks are synchronous so that there is no race condition. All the guests get their
event twMpEventGuestStartGame before the host gets the
twMpEventHostStartGame event

Events twMpEventPlayerState – callback is called with this event whenever the state of a
device changes.

twMpEventGuestStartGame – Guests get this event when a game is starting. Upon
receiving this event a guest should create a listener socket and advertise it for the
game network. Guest should also register a management callback function to accept
the handoff of the bluetooth network responsibility.

twMpEventHostStartGame – This event means that all hosts have received and
processed the twMpEventGuestStartGame and the game can be started. The host
should register a management callback function to accept the handoff of the
bluetooth network responsibility. The host is responsible for initiating any L2Cap or
RFComm connections at this point.

Header TwMp.h

Sample TBD

TwMpCancelGame
Purpose On a host, This call disconnects all devices in the piconet and cancels the game. On

a guest this call removes the guest from the game.

Prototype Err TwMpCancelGame(void)

Result twMpErrNoError – Game is canceled. Callback is unregistered

twMpErrPending – Game is in the process of canceling. Callbacks will cease after
reception of twMpEventGameCanceled event.

twMpErrNotOpen - Multiplayer library not open.

Comments This call implicitly unregisters callbacks either immediately on twMpErrNoError or
after reception of twMpEventGameCanceled on twMpErrPending.

Header TwMp.h

Sample TBD

TwMpGetNumPlayers
Purpose Get the number of players who have been invited into the game and also the host.

Prototype Err TwMpGetNumPlayers(UInt8* numPlayers)

Parameters numPlayers
[out]

Number of players invited or hosting the game.

Result twMpErrNoError

twMpErrNotOpen - Multiplayer library not open.

twMpErrParamError – numPlayers is NULL

Comments

Header TwMp.h

Sample TBD

TwMpGetAllPlayers
Purpose Get the list of players who have been invited into the game and also the host.

Prototype Err TwMpGetAllPlayers(BtLibDeviceAddressType bdAddr[], UInt8 arraySize,
UInt8* numPlayersReturnedP)

Parameters bdAddr
[out]

List of players who have been invited and the host.

 arraySize
[in]

Number of elements allocated in bdAddr array

 numPlayersR
eturnedP
[out]

Number of elements returned in bdAddr array

Result twMpErrNoError

twMpErrNotOpen - Multiplayer library not open.

twMpErrParamError – illegal parameter passed in

twMpErrNotEnough – arraySize is too small to accept all data.

Comments

Header TwMp.h

Sample TBD

TwMpGetNumAcceptedPlayers
Purpose Get the number of players who have accepted an invitation into the game.

Prototype Err TwMpGetNumAcceptedPlayers(UInt8* numPlayers)

Parameters numPlayers
[out]

Number of players invited or hosting the game.

Result twMpErrNoError

twMpErrNotOpen - Multiplayer library not open.

twMpErrParamError – numPlayers is NULL

Comments

Header TwMp.h

Sample TBD

TwMpGetAcceptedPlayers
Purpose Get the list of players who have accepted an invitation into the game.

Prototype Err TwMpGetAcceptedPlayers(BtLibDeviceAddressType bdAddr[], UInt8
arraySize, UInt8* numPlayersReturnedP)

Parameters bdAddr
[out]

List of players who have accepted a game invitation.

 arraySize
[in]

Number of elements allocated in bdAddr array

 numPlayersR
eturnedP
[out]

Number of elements returned in bdAddr array

Result twMpErrNoError

twMpErrNotOpen - Multiplayer library not open.

twMpErrParamError – illegal parameter passed in

twMpErrNotEnough – arraySize is too small to accept all data.

Comments

Header TwMp.h

Sample TBD

Callback Events

It is important to make sure that the callback function is declared using the SYSTEM_CALLBACK
specifier to make sure your global variables are available in the callback function.

twMpEventPlayerState
Purpose A callback with this event happens every time there is a change in a players state.

Event Specific
Callback Info

newState New state of the device

 Reason Reason for transition to a state (for twMpPlayerFailed)

 Player Address of device that changed states.

Comments

Header TwMp.h

twMpEventHostStartGame
Purpose A callback with this event happens at the completion of the game starting process so

that the host can start up the game. All the ACL links remain in place but the
sockets have been torn down. This event is triggered by a call to
TwMpHostStartGame(). No more callbacks will occur after this event is processed.
Host should register the BtLib management callback upon getting this callback
event.

Event Specific
Callback Info

hostAddr Address of the host.

 guestAddrs List of multiplayer game guests.

 numGuests Number of addresses in guestAddrs list.

Comments IMPORTANT: the btlib is left open by the multiplayer library so that the ACL links
can be left in place. This means you do not have to call BtLibOpen to use the BtLib
APIs. A call to TwMpClose will close the BtLib for the multiplayer library. Since
the BtLib keeps an open count you also need to close the library for every time that
it is opened independently by the application as well.

Header TwMp.h

twMpEventGameCanceled
Purpose A game has been canceled. No more callbacks will occur. Triggered by a call to

TwMpCancel() that returns twMpErrPending.

Comments IMPORTANT: the btlib is left open by the multiplayer library so that the ACL
links can be left in place. This means you do not have to call BtLibOpen to use the
BtLib APIs. A call to TwMpClose will close the BtLib for the multiplayer library.
Since the BtLib keeps an open count you also need to close the library for every
time that it is opened independently by the application as well.

Header TwMp.h

twMpEventGuestStartGame
Purpose This event is sent to each guest device when the Host has called

TwMpHostStartGame(). The guest should register its management callback, create
its listener socket, and advertise it upon receiving this event. No more callbacks will
occur.

Event Specific
Callback Info

hostAddr Address of the host.

Comments It is recommended that all connections are initiated by the host upon receiving the
twMpEventHostStartGame event not this event. Initiating connections with this
event in games with larger amounts of players could lead to a race condition where
the game and TwMp use more bluetooth stack resources than are available.

IMPORTANT: the btlib is left open by the multiplayer library so that the ACL
links can be left in place. This means you do not have to call BtLibOpen to use the
BtLib APIs. A call to TwMpClose will close the BtLib for the multiplayer library.
Since the BtLib keeps an open count you also need to close the library for every
time that it is opened independently by the application as well.

Header TwMp.h

Player States

twMpPlayerHosting
Purpose This player is hosting the game.

Comments

Header TwMp.h

twMpPlayerWaiting
Purpose Waiting for bluetooth connection to get in place

Comments

Header TwMp.h

twMpPlayerAclConnected
Purpose Connected to device looking for multiplayer service

Comments

Header TwMp.h

twMpPlayerConnected
Purpose Connected to service. Player being asked to join the game.

Comments

Header TwMp.h

twMpPlayerAccepted
Purpose Player has accepted the game invitation.

Comments

Header TwMp.h

twMpPlayerDeclined
Purpose Player has declined the game invitation.

Comments

Header TwMp.h

twMpPlayerFailed
Purpose Connection to bluetooth device failed

Comments Refer to the reason returned with the twMpEventPlayerState callback or in
TwMpPlayerInfoType structure as a result of calling TwMpGetPlayerInfo for a more
specific error code.

Header TwMp.h

API Usage

This API is used differently depending on whether you are Hosting the game or a Guest participant.

Host Only APIs
TwMpHostGame
TwMpHostInvitePlayer
TwMpHostDisinvitePlayer
TwMpHostStartGame

Guest Only APIs
TwMpGuestAcceptInvitation

General APIs
TwMpOpen
TwMpClose
TwMpCancelGame
TwMpGetPlayerInfo
TwMpGetNumPlayers
TwMpGetAllPlayers
TwMpGetNumAcceptedPlayers
TwMpGetAcceptedPlayers

Example game formation process

Some of the multiplayer APIs are used differently if you are a game host or a game guest. A host would
start a game by with the following basic steps.

1. Host starts the game

2. Discover the players to invite. One way to do this is to use the BtLibDiscoverMultipleDevices
call. A custom discovery process using the BtLib could also be used.

3. Call TwMpOpen().
4. Call TwMpHost().
5. Call TwMpHostInvitePlayer(). to invite each guest.
6. Monitor callback to determine who has accepted, declined, and failed.
7. Call TwMpHostStartGame() when all the appropriate guests have accepted their invitation.
8. Upon receiving twMpEventHostStartGame register BtLib management callback and connect to

the listening guests via L2Cap or RFCOMM (ACL links are still in place).
9. When the multiplayer game ends call TwMpClose().

A guest would follow these basic steps.

1. Game is sublaunched with twMpAppLaunchCmdAskUser launch code to allow replacement of
invitation dialog.

2. User accepts invitation to game. (If twMpAppLaunchCmdAskUser launch code is handled by the
game to replace the invitation dialog then return twMpResultAccept from PilotMain to accept the
invitation).

3. Game is launched and twMpFtrNumMultiplayerLaunch feature exists to indicate that game was
launched by user accepting an invitation.

4. Call TwMpOpen().
5. Call TwMpGuestAcceptInvitation().
6. Monitor callback to determine who has accepted, declined, and failed.
7. Upon receiving twMpEventGuestStartGame register the BtLib management callback and also

create and advertise a listener socket.
8. When the multiplayer game ends call TwMpClose()

