

Tapwave® Programmer’s Reference
Version 1.1a

Tapwave Programmer’s Reference

Copyright

© Copyright 2003-2004 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. The
Palm logo, HotSync, Palm OS, Palm, Palm Powered, and the Palm Powered logo are registered trademarks of
PalmSource, Inc., and its affiliates. X-Forge is a trademark of Fathammer, Ltd. Java is a registered trademark of Sun
Microsystems, Inc. Windows is a registered trademark of Microsoft Corporation, Inc. All other brands are trademarks or
registered trademarks of their respective owners.

2

Tapwave Programmer’s Reference

1.Overview
This document describes the APIs developed by Tapwave for Tapwave devices. These
APIs support the unique hardware features in Tapwave devices, and assist developers
in writing high performance, interactive games.

Developers can use APIs from a variety of sources to create applications, including the
Fathammer X-Forge™ 3D Game Engine, Fathammer X-Forge™ Core gaming APIs,
standard Palm OS® APIs, as well as the custom Tapwave APIs described in this
document. See the appropriate documentation for descriptions of the other APIs.

• Tapwave Platform APIs: Tapwave Developer’s Overview

• Fathammer X-Forge 3D Game Engine & Fathammer X-Forge Core APIs: X-Forge
1.0.2 Guide

• Palm OS APIs: Palm OS Programmer’s API Reference

2.Specifications

2.1.Description

2.1.1.Large Screen and Landscape Support
Tapwave devices have a large screen, which can be used in both landscape and
portrait modes. The default configuration is 480x320 pixels in landscape mode. The
current Palm OS version 5.x does not directly support these features, however they
are supported with the PINS 1.1 APIs from PalmSource. Palm OS 6.0 will support a
large screen, but it does not currently support landscape mode. Therefore Tapwave
will continue to support the current PINS 1.1 APIs on future Tapwave devices,
regardless of the OS used.

Tapwave is also providing two additional features that are compatible with Palm OS
6.0: a subset of the PINS 1.1 APIs which controls hiding and showing the Pen Input
Area (sometimes referred to as the Graffiti® 2 Area), rotating the screen, and showing
and hiding the Status Bar.

Applications can use these APIs to change screen bounds and screen mode
dynamically, and to create new windows and forms after the desired mode is enabled.
Existing Palm OS APIs are compatible with the newly created windows and forms.

2.1.2.Advanced Input Support
Currently Palm OS has a very simple event model for handling user inputs – the OS
generates one event for every button press or pen move. This event model cannot

3

http://www.tapwave.com/developers/members/TwOverview/TwDevOver_TOC.html
http://www.tapwave.com/developers/members/X-Forge/index
http://www.tapwave.com/developers/members/X-Forge/index
http://www.palmos.com/dev/support/docs/palmos/ReferenceTOC.html

Tapwave Programmer’s Reference

handle advanced user input devices, such as analog joysticks or Tapwave device’s
navigator. Typical joysticks have several analog axes and many buttons. Games may
use complicated button combinations for different actions. Presenting the full state of
the navigator, using Palm OS’s current event model, requires multiple events. In
addition, existing Palm OS events cannot carry analog input values. Since Palm OS uses
different events for different input devices, it is difficult to get the entire input state
in a single event. Therefore, Tapwave is introducing a new event model to solve this
problem.

The solution is to use a new kind of event queue that provides the complete input
state on the device. Instead of mandating a fixed event format, the new event queue
uses an application-specified event format and other attributes, which the operating
system generates accordingly. For edge-driven inputs, such as button-down or button-
up, the operating system generates one event for every transition. For state-driven
inputs, such as analog navigator positions or digitizer input, the operating system
generates events at an application-specified polling period. The event is formatted
according to the application-specified format.

The new event format is very simple. Each event is an array of 32-bit values. Each
value in an event represents a specific input requested by the application. For
buttons, a zero value means the button is up, and a non-zero value means the button
is down. For navigator positions, a value from 32767 to –32767 is returned. For
digitizer input, the pen’s x and y positions are returned. Applications need to check
the pen’s z value (pressure) to know whether the pen is pressed. A non-zero z value
means the pen is pressed. There are also input features that do not directly match
hardware features. For example, a 4-way navigator and an 8-way navigator may be
simulated using navigator positions—with a zero value meaning the navigator is in the
center position, and a value from 1 to 8 indicating the direction of the navigator: 1 is
up, 2 is up-right, and so on, proceeding clockwise. More sophisticated features may be
introduced in the future.

Note: Even though they all map to the same hardware, it is possible to retrieve the
both the 4-way navigator and 8-way navigator states from one event queue.

2.1.3.2D Graphics Support
For 2D graphics, you can use either a high-level API provided by the X-Forge Core
library or a low level API provided by the Tapwave TwGfx library. You can also use the
standard Palm OS Window Manager, but it does not take advantage of many of the
hardware acceleration features on Tapwave devices.

For an overview and references to additional information, see “2D Graphics” in the
Tapwave Developer’s Overview.

2.1.3.1X-Forge Core 2D
Two-dimensional graphics under X-Forge Core is based mainly on graphics surfaces. A
graphics surface is a wrapper for the actual pixel data, with additional functionality.
More specifically, it is a memory region in the graphic accelerator’s memory space

4

http://www.tapwave.com/developers/members/TwOverview/TapwaveDeveloperOverview7.html

Tapwave Programmer’s Reference

where graphics operations are performed, similar to a device context in Windows® or
a Graphics object in Java®. When working with surfaces you can do any of the
following:

• Blit surfaces onto surfaces with optional scaling, blending and color keying

• Clip a blitted surface to the target surface automatically

• Fill rectangles and draw lines

• Lock the surface and accessed data directly

For more information, see “Chapter 8, 2D Graphics” in the X-Forge 1.0.2 Guide.

2.1.3.2Tapwave TwGfx Graphics API
The Tapwave TwGfx Graphics API allows for low-level access to the graphic
accelerator chip functionality, but it still provides an abstraction layer above the chip
register set.

Note: Because of limited portability, and possible future incompatibility, Tapwave
recommends against using this API. Instead, try to use the X-Forge Core API
whenever possible.

The Direct Graphics API provides the following abstractions (feature groups):

• Device - enumerates the available graphics devices (only one in this case), and
initializes the AHI graphics library

• Surface - creates, deletes, and manages surfaces

• Display - controls features of the display such as: overlays, cursors, bit depth, etc.

• Draw - performs rendering operations on surfaces, such as: clipping, stretching,
rotation, shading, alpha blending, brush blending, line and glyph drawing, etc.

• Power - provides an interface to power the device up and down, and detects the
power state

For more information, see the Tapwave TwGfx Graphics API Reference which will be
available at a future date.

2.1.4.3D Graphics Support
3D graphics capabilities are provided by the X-Forge Core graphics library. The X-Forge
3D API is very similar to SGI's OpenGL and Microsoft's Direct3D. It is a low-level
graphics library, which uses primitives such as triangles, triangle strips, and fans to
render 3D objects and scenes. As in OpenGL and Direct3D, the heart of the API is the
graphics device. Different graphics devices can render identical graphics calls
differently. For example, one device might offer hardware-assisted, perspective-
corrected texturing, whereas another device might offer full-scene anti-aliasing.

5

http://www.tapwave.com/developers/members/X-Forge/ch08.html
http://www.tapwave.com/developers/members/TwGfx/TwGfx_TOC.html

Tapwave Programmer’s Reference

For more information, see “Chapter 9, 3D Graphics” in the X-Forge 1.0.2 Guide.

2.1.5.Bluetooth Collaborative Networking Support
The Tapwave device supports three levels of networking APIs: the standard Palm OS
APIs, the X-Forge Core Network API, and the X-Forge Gaming Engine Network API.

For more information, see “Networking” in the Tapwave Developer’s Overview.

2.1.5.1Palm OS Bluetooth API
Tapwave uses a stack that supports the Bluetooth APIs referenced in the appendix
section of the Palm OS 5.1 Reference Manual. This stack is compatible with those APIs.

For comprehensive information on Bluetooth, see “Chapter 6, Bluetooth” in the Palm
OS Programmer’s Companion, Volume II, Communications.

2.1.5.2X-Forge Core Network API
The X-Forge libraries contain an abstraction layer that provides a higher-level model
for interactive network gaming. This model runs over either a Bluetooth or a WAN
interface, and is accessible via a sockets API. You can choose from four different types
of packets: guaranteed, non-guaranteed, quick-guaranteed and recent-state.
Additionally, a simplified, higher-level networking API is available, which eases
development of networked games.

For more information, see “Chapter 5, Overview - Network” in the X-Forge 1.0.2
Guide.

2.1.5.3X-Forge Game Engine Network API
The networking API in the X-Forge Game Engine allows packets to be sent from one
client device to a receiver on another device. Receivers are like mail boxes, with an ID
number as the address. Receivers allow packets to be sent directly to a specific game
object on another device. Each game object typically has its own receiver.

Multiplayer games are implemented by synchronizing game object states over the
network. Packets are sent to other devices participating in the same game, and can be
sent with various levels of priority.

For more information, see “Chapter 20, Multiplayer Games” in the X-Forge 1.0.2
Guide.

2.1.6.Advanced Sound Support
Sound is an important part of the user experience on Tapwave devices, and so it is
given more attention in the user interface and API than in generic Palm OS handhelds.

6

http://www.tapwave.com/developers/members/X-Forge/ch09.html
http://www.tapwave.com/developers/members/TwOverview/TapwaveDeveloperOverview12.html
http://www.palmos.com/dev/support/docs/palmos/BTCompanion.html
http://www.tapwave.com/developers/members/X-Forge/ch05.html
http://www.tapwave.com/developers/members/X-Forge/ch20.html

Tapwave Programmer’s Reference

Tapwave has provided some simple wrappers for getting and setting the application
volume on the device. All applications which play primarysounds (games, music,
video) should use these APIs and respect the settings. The user can easily change this
volume by pressing and holding the power key. Additional sound controls are provided
in the Sound preferences panel.

Palm OS currently provides support for playing PCM/ADPCM sampled sound and simple
MIDI tones. Tapwave devices contain advanced hardware that supports playing 128 GM-
synthesized instrument/special-effect sounds and 47 drum sounds. Tapwave plans to
provide a Direct Sound API to access and play these GM-synthesized sounds. This API
will be based on the Yamaha PA-2 Sound Library API. It will provide a MIDI-style
interface. Support for this feature may not appear in the initial Tapwave release.

The Tapwave volume APIs do set the preferences in Palm OS, so compatible
applications can query the game sound level by accessing the prefSysSoundVolume
System Preference. For more information, see “Chapter 43, Preferences” in the Palm
OS Programmer's API Reference.

In addition, support for turning the audio amplifier on/off, muting the speakers and
headphones, and controlling Bass Boost are available thru the Amplifier Virtual Device
API.

2.1.7.Gaming Support

Tapwave provides a gaming support API for recording and reporting High Scores. It
should be used to help provide a more consistent and unified gaming experience for
the end user. It also enables you to take advantage of some special built-in support, as
described below.

2.1.7.1High Score
The Tapwave platform enables you to manage and share high scores for games,
stroking the egos of the game players by letting them tell the world of their
achievement and compare themselves with other players. There are several pieces
needed for this component: APIs and software on the device for the game developers
to use, conduits for synchronization to transport the data between the device and
Tapwave’s website, and finally a web front end to sort, filter, and display the high
score data. Two major features are possible: pushing new high scores to the website
and pulling others’ high scores from the website for local comparison.

The high score manager can be used to store all the high scores for all games on a
given device. The application can control how many local scores are saved. Only the
highest local score will be sent to the server. The application can request that a
certain number of highest scores can be retrieved from the server, but whether this
happens or not depends on other variables like whether the user is registered with the
website and how often they sync.

There are many different ways of measuring a score and presenting that score to the
user. The high score manager, however, understands only one type of score – a 32 bit

7

http://www.palmos.com/dev/support/docs/palmos/Preferences.html

Tapwave Programmer’s Reference

unsigned integer. Larger numbers are better scores. This ‘normalized’ score is never
displayed for the user via the high score manager or the website. Instead, a formatted
string accompanies each score and this is displayed for the user. A given game can
register to track as many different score types (points, time, goals) as it likes, each
one is treated as an independent score category. This should give apps the flexibility
to report scores however they wish: as times, points, kills, goals, or whatever.

It should not be necessary for the application to include user name or date information
in the formatted string, as this data is stored elsewhere with the user account. There
is one date included for each high score record, and the user name should come from
the device registry not from the game itself.

2.1.7.2Other Useful Functions
Tapwave includes a few other functions which may be of use for Tapwave-specific
applications:

• CtlSetFrameStyle.This API allows applications to change the frame style of UI-
layer controls. It is most useful for turning off the frame on graphic controls. When
you use this API in combination with transparency in the graphics, it effectively
allows you to create non-rectangular controls.

• WinGetBitmapDimensions.This API allows applications to get the effective
dimensions of any bitmap (single or double density) in the current coordinate
system. It is most useful for centering or right-justifying an image.

• TwGetSlotNumberForVolume.This API returns the slot number where the card
that contains a VFS volume is inserted. (For VFS volumes which do not belong to
any card it returns 0.)

• TwCreateDatabaseFromImage., This API is similar to
DmCreateDatabaseFromImage which installs a Palm OS database from a .prc or
.pdb format byte stream, but it also accepts byte streams that are compressed
with gzip, e.g. a .prc.gz or .pdb.gz file.

• TwGetGraphicForButton., This API returns a small image of a gaming button on
the screen. It is useful for creating on-screen documentation or preference
controls that enable the user to remap a button.

8

Tapwave Programmer’s Reference

2.1.8.Vibration Support

Tapwave devices have a built-in rumbler. An API gives applications the ability to
activate the rumbler device and shake things up a bit. This API provides different
types of feedback to the user by specifying the duration and period of the rumble. It
takes a stream of bytes, which specifies how long the rumbler is activated, and how
long it is quiet. You can define any number of canned effects by varying these
intervals, and by repeating the stream of bytes continuously for a certain period.
Examples of effects include an engine idling, a shock from an explosion, or driving a
vehicle over different road surfaces. The application can then choose from these
effects during game play, providing a more realistic, fun experience. The rumbler can
also be used by applications to get the user’s attention, through the Palm OS Attention
Manager. Tapwave-specific constants are defined to address the rumbler.

2.1.9.Digital Rights Management Support
See the Digital Rights Management document for details.

3.API Specifications

3.1.Tapwave Features
Palm OS applications that use Tapwave-specific APIs should check the Tapwave API
version before they actually call them. The version information is published through
the Palm OS feature manager. Applications can use the following sample code to do
the check.

Boolean TwCheckAPIVersion(UInt32 minVersion) {
 UInt32 version;
 FtrGet(twFtrCreator, twFtrAPIVersion, &version);
 return version >= minVersion;
}

At compile time, the Tapwave API version is specified by the
constant TAPWAVE_API_VERSION.

9

http://www.tapwave.com/developers/members/DRM/DRM_TOC.html

Tapwave Programmer’s Reference

/* Tapwave API creator */
#define twFtrCreator ‘Tpwv’

/* Tapwave API feature number */
#define twFtrAPIVersion 0x0000

/* Current Tapwave API version, which is incremented upon every
update. */
#define TAPWAVE_API_VERSION ????

3.2.Tapwave Virtual Characters

/*
 * This vchr is posted when a Tapwave input queue enqueues an
event.
 * In order to do so, applications need to set input queue
capacity to more than
 * zero and activate the queue. Otherwise, an event will not be
enqueued.
 * If an application needs to block for an event, it should use
standard
 * Palm OS EvtGetEvent(), and look for the vchrTwInput. Tapwave
input queues
 * are non-blocking. If an application is not interested in
queued events,
 * it can use TwInputPoll() to find current the input state
without using events.
 */
#define vchrTwInput (vchrTapwaveMin + 0)

/* Virtual characters for special buttons. */
#define vchrBluetooth (vchrTapwaveMin + 2)
/* Virtual characters for gaming buttons */
#define vchrFunction (vchrTapwaveMin + 3)
/* Virtual characters for left and right triggers. */
#define vchrTriggerLeft (vchrTapwaveMin + 4)
#define vchrTriggerRight (vchrTapwaveMin + 5)

10

Tapwave Programmer’s Reference

/* Virtual characters for action buttons (A top, rest clockwise).
*/
#define vchrActionA (vchrTapwaveMin + 6)
#define vchrActionB (vchrTapwaveMin + 7)
#define vchrActionC (vchrTapwaveMin + 8)
#define vchrActionD (vchrTapwaveMin + 9)
/*
 * Palm OS 6.0 defines the following constants for the 5-way
navigator.
 * We use the same values for future compatibility. --hz
 */
#if !defined(vchrRockerUp)
#define vchrRockerUp 0x0132 // 5-way rocker up
#define vchrRockerDown 0x0133 // 5-way rocker down
#define vchrRockerLeft 0x0134 // 5-way rocker left
#define vchrRockerRight 0x0135 // 5-way rocker right
#define vchrRockerCenter 0x0136 // 5-way rocker
center/press
#endif

/* Virtual characters for the 5-way navigator. */
#define vchrNavUp vchrRockerUp
#define vchrNavDown vchrRockerDown
#define vchrNavLeft vchrRockerLeft
#define vchrNavRight vchrRockerRight
#define vchrNavSelect vchrRockerCenter

/* Virtual characters for 9-way navigator corners.
 * NOTE: These are never returned by EvtGetEvent().
 * Only the 5-way edges are returned by EvtGetEvent().
 * This results in better accuracy with old
 * legacy apps that only understand the 5-way model.
 * 9-way apps, which want the corners, must check
 * the corners after receiving a 5-way keyDownEvent
 * using KeyCurrentState() as follows:
 *
 * Int32 keyState = KeyCurrentState();
 * if ((keyState & keyBitsNavUpLeft) == keyBitsNavUpLeft)
 * keyCode = vchrNavUpLeft;

11

Tapwave Programmer’s Reference

 *
 * The codes below are suggested as "safe" key codes.
 */
#define vchrNavUpLeft (vchrTapwaveMin + 11)
#define vchrNavUpRight (vchrTapwaveMin + 12)
#define vchrNavDownLeft (vchrTapwaveMin + 13)
#define vchrNavDownRight (vchrTapwaveMin + 14)

3.3.Tapwave Error Codes

Tapwave APIs do not define their own error codes. Instead, standard POSIX error codes
are used. These widely used error codes are documented in <sys_errno.h>.

3.4.Tapwave Screen APIs
There are three screen APIs, which control:

• Display orientation: landscape (wide) or portrait (tall)

• Pen Input Area: open or closed

• Status Bar: visible or hidden

The Pen Input Area, Status Bar, and Screen Orientation APIs are part of the PINS 1.1
API model, which PalmSource has defined as a standard for Palm OS 5.2 licensees.
Licensees may implement this model, which will be available and supported by
PalmSource in Palm OS 6.0.

Applications can use any part of the display that is not covered by the Status Bar or
the Pen Input Area. Applications must be careful to define windows and forms that fit
the currently available screen dimension (including orientation). The screen bounds
can easily be determined by calling WinGetBounds(WinGetDisplayWindow(),
…). When the available window size changes, the
SysNotifyDisplayResizedEvent notification and winDisplayChangedEvent
events are generated. Applications should adjust their form sizes accordingly in their
event handlers.

Note: Applications that need to be compatible with PINS 1.0 should register to
receive the sysNotifyDisplayResizedEvent notification and use
EvtAddUniqueEventToQueue to add their own winDisplayChangedEvent
to the event queue. PINS 1.0 did not include this event. By adding it uniquely,
you guarantee that only one event will be seen even on devices that support
the event directly. Applications should do all resizing and layout in response to
winDisplayChangedEvent.

The Tapwave device implements a simple Status Bar. It is located on the edge of the
display, either to the far right or far left when in landscape mode, or at the bottom
when in portrait mode. The handedness control in the General preference panel allows
the user to specify on which side the Status Bar and Pen Input Area appear when
visible. The Status Bar contains a button/icon, which when tapped, causes the screen

12

Tapwave Programmer’s Reference

orientation to toggle between portrait and landscape modes. The Status Bar also
contains a button/icon, which when tapped, causes the Pen Input Area to be hidden or
visible. The application can control whether the Status Bar appears. If the application
hides the Pen Input Area, and hides the Status Bar, as described above, then it can use
the entire screen. Note that if the Pen Input Area is visible, the Status Bar is visible –
it is not possible to hide the Status Bar and display the Pen Input area simultaneously.

The ability for the user to hide the Pen Input Area could cause problems for existing
Palm™ applications that assume that a Pen Input method is always available. In
particular, an application could bring up a form that requires user input, even if the
user had chosen to hide the Pen Input Area. To solve this problem, the display
manager automatically shows the Pen Input Area whenever any old window or dialog is
opened. Old windows or dialogs are identified as those which do not call
FrmSetDIAPolicyAttr(formP, frmDIAPolicyCustom).

Another way for an application to ensure that the Pen Input Area is always available is
to first show it, and then disable the Status Bar’s Pen Input Trigger button. An
application can also disable the Status Bar button that switches screen orientation.
This is done through the TwOrientationTriggerSetState and
PINSetInputTriggerState APIs, as described below.

To make a full-screen application with the PINS 1.1 APIs, an application needs to do
the following:

Upon launching an application, the Pen Input Area and Status Bar are visible, and the
display bounds are 160x160. The screen orientation will most likely be landscape,
because the Tapwave launcher displays in landscape mode. However, the system does
not guarantee this and, in fact, the screen orientation reflects its previous state.

During frmLoadEvent or frmOpenEvent (before the first call to FrmDrawForm), an
application should:

Call FrmSetDIAPolicyAttr(formP, frmDIAPolicyCustom) to disable automatic
handling of the Pen Input Area state

Call SysSetOrientation, PINSetInputAreaState, StatShow/StatHide,
SysSetOrientationTriggerState, and PINSetInputTriggerState in
whatever combination desired to get the screen into the desired configuration.
Permissible values for PINSetInputArea include open, closed, and user. The user
state is defined as the last state the user chose by tapping the Status Bar button.
Permissible values for SysSetOrientation on Tapwave devices include portrait,
landscape, and user. The user state is defined as the last state the user chose for this
application by tapping the Status Bar button.

After configuring the screen, the application can call
WinGetBounds(WinGetDisplayWindow(), …)or WinGetDisplayExtent(…)to
determine the size of the application area.

Resize the form with WinSetWindowBounds(FrmGetWindowHandle(formP), …)

13

Tapwave Programmer’s Reference

Move and resize form objects as necessary with FrmGetObjectBounds and
FrmSetObjectBounds or FrmGetObjectPosition and
FrmSetObjectPosition.

Finally, the application should display the form with FrmDrawForm. Displaying the
form also updates the Pen Input Area and Status Bar display.

During winDisplayChangedEvent handling, an application should:

Validate that its form is the active form with FrmGetActiveForm. (Defensive
coding.)

Call WinGetBounds(WinGetDisplayWindow(), …) or
WinGetDisplayExtent(…)to determine the size of the application area.

Resize the form with WinSetWindowBounds(FrmGetWindowHandle(formP), …)

Move and resize form objects as necessary with FrmGetObjectBounds and
FrmSetObjectBounds or FrmGetObjectPosition and
FrmSetObjectPosition.

If the form changed size or objects changed location, then redraw the form by calling
FrmDrawForm. (Try to avoid redrawing if nothing changed.)

Return handled = true from the event handler.

During winEnterEvent, the application regains control after some dialog box, other
OS, or 3rd party software has temporarily taken control. The OS attempts to restore
the Pen Input Area, Status Bar, orientation, and trigger states for the application.
However, because some software is not smart about the Pen Input Area, Status Bar,
and so on, the screen may be left in an unexpected state. To correct this, the smart
application can optionally:

Validate that the winEnterEvent corresponds to the correct application form, by
calling either FrmGetActiveForm or FrmGetActiveFormID, as appropriate.
(Defensive coding.)

Call SysSetOrientation, PINSetInputAreaState, StatShow/StatHide,
SysSetOrientationTriggerState, and PINSetInputTriggerState in
whatever combination desired to get the screen into the desired configuration. Note
that if the user state is selected, the actual user choice may be different from the
previous one due to the user changing the state.

Note that if any state change was made, a new winDisplayChangedEvent is sent,
and the application can do all the form sizing and object moving in response to that
event. Applications do not need to resize in response to winEnterEvent.

During application exit:

14

Tapwave Programmer’s Reference

It is not required or recommended to restore any of the Status Bar, Pen Input Area,
orientation, or trigger states. The Tapwave implementation of the PINS specification
restores all of these states (except orientation) to their default before launching the
next application. Just quit.

Applications that wish to work with other devices that implement the 1.0 version of
the PINS specification need to be aware of limitations in that model, and how to work
around them, as follows:

The winDisplayChangedEvent is not sent by PINS 1.0 implementations.
Applications can register to receive the sysNotifyDisplayResizedEvent
notification, and can respond by adding the winDisplayChangedEvent using the
‘unique’ function to avoid duplicate events:

 EventType event;
 MemSet(&event, sizeof(EventType), 0);
 event.eType = winDisplayChangedEvent;
 EvtAddUniqueEventToQueue(&event, 0, true);

Be aware that the PINS 1.0 implementation may require you to call
WinSetConstraintsSize before making any other PINS function call, and it may
require you to make these calls during frmLoadEvent handling. The PINS 1.1
specification does not require the use of WinSetConstraintsSize.

Be aware that the PINS 1.0 specification does not allow the pinInputAreaUser
mode for PINSetInputAreaState. Instead, the initial Pen Input Area state may be
left in the last user state. Tapwave attempts to support this by watching for
applications that call FrmSetDIAPolicy but do not explicitly call
PINSetInputAreaState. In these cases, the system sets the Pen Input Area to the
last user state. Unfortunately, this happens during the first call to FrmDrawForm. So
on Tapwave devices, the applications that do this initially open in a small state and
then quickly resize if necessary.

3.4.1.Getting Hardware Characteristics

There are some features in the PINS 1.1 specification which you can use to determine
the orientation, Pen Input Area, and Status Bar capabilities of a device.

3.4.1.1PINS version
The version of the PINS implementation is available in the feature specified by
pinCreator and pinFtrAPIVersion. Example:

UInt32 pinVersion;
FtrGet (pinCreator, pinFtrAPIVersion, &pinVersion);
if (pinVersion >= pinAPIVersion1_1)
 // PINS 1.1 APIs are available

15

Tapwave Programmer’s Reference

3.4.1.2Pen Input Area Capabilities
The capabilities (if any) of the Pen Input Area on a device that supports the PINS 1.1
specification can be read from the feature specified by sysFtrCreator and
sysFtrNumInputAreaFlags:

UInt32 inputAreaCapabilities;
FtrGet (sysFtrCreator, sysFtrNumInputAreaFlags, &
inputAreaCapabilities);
if (inputAreaCapabilities & grfFtrInputAreaFlagDynamic)
 // has dynamic input area
if (inputAreaCapabilities & grfFtrInputAreaFlagLiveInk)
 // input area shows feedback when writing
if (inputAreaCapabilities & grfFtrInputAreaFlagCollapsible)
 // input area can be closed
if (inputAreaCapabilities & grfFtrInputAreaFlagLandscape)
 // input area supports landscape orientation
if (inputAreaCapabilities & grfFtrInputAreaFlagLefthanded)
 // input area supports lefthanded preference

16

Tapwave Programmer’s Reference

3.4.2.Screen Orientation

SysGetOrientation

Purpose Get current screen mode (portrait or landscape).

Prototype UInt16 SysGetOrientation (void);

Result The current screen orientation, either sysOrientationPortrait or
sysOrientationLandscape.

Comments This function returns the current screen orientation, either landscape or
portrait. It does not have an error condition.

Header PenInputMgr.h (included by Tapwave.h)

Constants sysOrientationPortrait
 Landscape screen mode

sysOrientationLandscape
 Portrait screen mode

Sample

See sample for SysSetOrientation

 API.

SysSetOrientation

Purpose Set screen orientation to portrait or landscape.

Prototype Err SysSetOrientation(UInt16 orientation)

17

Tapwave Programmer’s Reference

Parameter
s

[in]
orientation

New screen mode, one of the following:
sysOrientationPortrait,
sysOrientationLandscape, or
sysOrientationUser.

Result errNone
pinErrInvali
dParam

Succeeded.
Invalid orientation mode passed.

Side
Effects

Newly created windows and forms use the new screen mode.

Events SysNotifyDisplayResizedEvent notification and winResizeEvent
event.

Comments This function sets the new screen orientation to either landscape (wide)
or portrait (tall). The actual screen dimensions depend upon whether or
not the Pen Input Area and Status Bar are visible, and on high- versus low-
density pixel mode. Applications should use PINSetInputAreaState to
show/hide the Pen Input Area, and StatShow/StatHide to show/hide
the Status Bar.

In landscape mode, the application window may appear to the left or
right of the display if the Pen Input Area is enabled. The actual position is
controlled by user preference. Applications should never assume or
change this window position.

Applications should use WinGetBounds(WinGetDisplayWindow(),
…) or WinGetDisplayExtent(…) to find the actual screen size.

Note that additional orientation flags are defined for the reverse
orientations. Tapwave devices do not support these orientations.

Header PenInputMgr.h (included by Tapwave.h)

18

Tapwave Programmer’s Reference

Constants sysOrientationPortrait
 Set screen orientation to portrait.

sysOrientationLandscape
 Set screen orientation to landscape.

sysOrientationUser
 Set screen orientation to whatever the user chose
last time.

Sample WinHandle window;
Int32 prevMode;
Err err;
RectangleType rect;

// Save previous screen mode
prevMode = SysGetOrientation();
// Change to portrait mode
(void) SysSetOrientation(sysOrientationPortrait);
// Create a full screen window
WinGetBounds(WinGetDisplayWindow(), &rect);
window = WinCreateWindow(&rect, noFrame, true, true,

&err);
// Erase entire window
WinEraseWindow();
// Any drawing operation
...
// Delete window
WinDeleteWindow(window, false);
// Restore previous mode
(void) SysSetOrientation(prevMode);

SysGetOrientationTriggerState

Purpose Get current state of the Status Bar button that switches screen orientation
mode.

Prototype UInt16 SysGetOrientationTriggerState(void)

Result The current state of the screen orientation trigger,
either sysOrientationTriggerDisabled or
sysOrientationTriggerEnabled.

19

Tapwave Programmer’s Reference

Side
Effects

None

Comments The Tapwave Status Bar contains a button that toggles the screen mode
orientation between landscape and portrait modes. This button can be
disabled by applications that want to prevent the user from switching
orientation mode while the application is running. This API allows the
application to determine what the current state of this button is – enabled
and functioning, or disabled and not functioning. Note that in the non-
functioning case, the button appears grayed-out as an indication to the
user.

Header PenInputMgr.h (included by Tapwave.h)

Constants sysOrientationTriggerDisabled
 Status bar button that switches orientation is
currently disabled.

sysOrientationTriggerEnabled
 Status bar button that switches orientation is
currently enabled.

Sample

See sample for SysSetOrientationTriggerState

 API.

SysSetOrientationTriggerState

Purpose Enable or disable the Status Bar button that switches screen orientation
mode.

Prototype Err SysSetOrientationTriggerState(UInt16 state)

Parameters [in]
state

New button state, either
sysOrientationTriggerDisabled or
sysOrientationTriggerEnabled

20

Tapwave Programmer’s Reference

Result ErrNone – Succeeded.
pinErrInvalidParam – invalid state passed.

Side
Effects

Enables or disables the functioning of the button on the Status Bar that
allows changing the screen mode orientation.

If the button is disabled, it appears grayed-out in the Status Bar as an
indicator to the user that it is non-functional.

Events SysNotifyDisplayResizedEvent notification and winResizeEvent
event

Comments The Tapwave Status Bar contains a button that toggles the screen mode
orientation between landscape and portrait modes. This button can be
disabled by applications that want to prevent the user from switching
orientation mode while the application is running.

Header PenInputMgr.h (included by Tapwave.h)

Constants sysOrientationTriggerEnabled
 Enable the Status Bar button that toggles screen
orientation.

sysOrientationTriggerDisabled
 Disable the Status Bar button that toggles screen
orientation.

Sample UInt16 prevMode;

// Save previous trigger state
prevMode = SysGetOrientationTriggerState();
// Disable the trigger
(void) SysSetOrientationTriggerState

(sysOrientationTriggerDisabled);
...
// Restore previous trigger state
(void) SysSetOrientationTriggerState (prevMode);

3.4.3.Pen Input Area
These functions comprise part of the PalmSource “Dynamic Input Area”(PINS 1.1 APIs.)
Tapwave has adapted these functions to improve forward- and backward-compatibility
with other platforms that implement PINS.

21

Tapwave Programmer’s Reference

PINGetInputAreaState

Purpose Return the current state of the dynamic Pen Input Area.

Prototype UInt16 PINGetInputAreaState(void);

Parameters None.

Result One of the constants defined below.

Comments Applications call this function to determine the current state of the Pin
Input Area.

Header PenInputMgr.h

Constants pinInputAreaOpen
 The dynamic input area is visible.

pinInputAreaClosed
 The dynamic input area is hidden.

pinInputAreaNone
 The devices does not support a dynamic input area.
(Never returned on this Tapwave release.)

Sample

See sample for PINSetInputAreaState

 API.

PINSetInputAreaState

Purpose Set the state of the input area.

Prototype Err PINSetInputAreaState(UInt16 state);

22

Tapwave Programmer’s Reference

Parameters [in]
state

The state to which the input area should be set (opened
or closed).

Result ErrNone – Succeded.

pinErrNoSoftInputArea – There is no dynamic input area on this
device.

pinErrInvalidParam – You have entered an invalid state parameter.

Side
Effects

Since the Pen Input Area cannot be displayed without the Status Bar
being displayed, PINSetInputAreaState automatically causes the
Status Bar to display if the Pen Input Area is activated from a full screen
configuration (i.e., no Status Bar or Pen Input Area).

If the Pen Input Area or Status Bar changes state, the notification
sysNotifyDisplayResizedEvent is broadcast, and a
winDisplayChangedEvent is enqueued.

Comments Applications call this function to open or close the Pen Input Area.

The Silkscreen Manager responds to this function by opening or closing
the Pen Input Area as requested.

Applications that want to use the entire screen need to use this function
to close the Pen Input Area and hide the Status Bar using StatHide.
Applications can determine the actual size of the available window area
by calling WinGetBounds(WinGetDisplayWindow(), …).
Applications can not draw outside of this application area.

Header PenInputMgr.h

Constants pinInputAreaOpen
 Display the dynamic input.

pinInputAreaClosed
 Hide the dynamic input area.

pinInputAreaUser
 Set the dynamic input area to the last state the
user chose by tapping the Status Bar button. May be
shown or hidden.

23

Tapwave Programmer’s Reference

Sample

See sample for StatShow

 API.

PINGetInputTriggerState

Purpose Return the state of the Status Bar input area button.

Prototype Int16 PINGetInputTriggerState(void);

Parameters None.

Result The current state of the input area trigger (see constants below).

Side Effects None

Comments The Tapwave Status bar contains a button that causes the Pen Input Area
to appear or disappear. This button can be disabled by applications that
want to prevent the user from showing or hiding the Pen Input Area while
the application is running. This API allows the application to determine
what the current state of this button is – enabled and functioning, or
disabled and non-functioning. Note that in the non-functioning case, the
button appears grayed-out as an indication to the user.

Header PenInputMgr.h

Constants pinInputTriggerEnabled
 The Status Bar button is enabled, and the user can
open and close the dynamic input area.

pinInputTriggerDisabled
 The Status Bar button is disabled and the user
cannot open and close the dynamic input area.

pinInputTriggerNone
 This device does not support a dynamic input area
(never returned by this Tapwave release.)

24

Tapwave Programmer’s Reference

Sample

See sample for PINSetInputTriggerState

 API.

PINSetInputTriggerState

Purpose Set the state of the input area button in the Status Bar.

Prototype Err PINSetInputTriggerState(Int16 state);

Parameters [in]
state

The state to which the input trigger should be set. See
constants below.

Result ErrNone – Succeeded.

pinErrNoSoftInputArea – There is no dynamic input area on this
device.

pinErrInvalidParam – You have entered an invalid state parameter.

Side
Effects

Enables or disables the functioning of the button on the Status Bar that
allows the user to show or hide the Pen Input Area.

If the button is disabled, it appears grayed-out in the Status Bar, as an
indicator to the user that the button is non-functional.

Comments The Tapwave Status Bar contains a button that causes the Pen Input Area
to appear or disappear. This button can be disabled by applications that
want to prevent the user from showing or hiding the Pen Input Area while
the application is running. This API allows the application to enable or
disable this button.

Header PenInputMgr.h

25

Tapwave Programmer’s Reference

Constants pinInputTriggerEnabled
 The Status Bar button is enabled, and the user can
open and close the dynamic input area.

pinInputTriggerDisabled
 The Status Bar button is disabled and the user
cannot open and close the dynamic input area.

Sample Int16 prevMode;

// Save previous trigger state
prevMode = PINGetInputTriggerState ();
// Disable the trigger
(void) PINSetInputTriggerState
(pinInputTriggerDisabled);
...
// Restore previous trigger state
(void) PINSetInputTriggerState (prevMode);

3.4.4.Status Bar
These functions comprise part of the PalmSource PINS 1.1 APIs.

StatHide

Purpose Hide the Status Bar.

Prototype Err StatHide(void);

Parameters None.

Result errNone – Succeeded.

statErrNoStatusBar – The device does not support a Status Bar.

statErrInputWindowOpen – The Pen Input Area is open.

Pre-
Conditions

The Pen Input Area must be closed (see
INSetInputAreaState

26

Tapwave Programmer’s Reference

).

Side
Effects

If the Status Bar changes state, the notification
sysNotifyDisplayResizedEvent is broadcast, and a
winDisplayChangedEvent is enqueued.

Comments This function can be called by an application that needs to draw on the
entire display area.

Note: Tapwave discourages you from hiding the Status Bar, since this
prevents the user from receiving and accessing status information.

This function has no effect if the Status Bar is already hidden.

Header PenInputMgr.h

Sample

See sample for StatShow

 API.

StatShow

Purpose Display the Status Bar.

Prototype Err StatShow(void);

Parameters None.

Result ErrNone – Succeeded.

statErrNoStatusBar – The device does not support a Status Bar.

Side
Effects

If the Status Bar changes state, the notification
sysNotifyDisplayResizedEvent is broadcast, and a
winDisplayChangedEvent is enqueued.

27

Tapwave Programmer’s Reference

Comments This function can be called by an application to display the Status Bar.
Use PINSetInputAreaState to display the Pen Input Area.

This function has no effect if the Status Bar is already hidden.

Header PenInputMgr.h

Sample Int16 prevPinMode;

// Save current input area state
prevPinMode = PINGetInputAreaState ();
// Take down the PINS area
PINSetInputAreaState(pinInputAreaClosed);

// Take down the Status Bar
if(StatHide() != errNone){
 // Handle error
}
// Get size of window area and draw, draw, draw
...
// Bring Status Bar back up
if(StatShow() != errNone){
 // handle error
}
// Restore previous input area state
(void) PINSetInputAreaState (prevMode);

StatGetAttribute

Purpose Query the current state of the Status Bar.

Prototype Err StatGetAttribute(UInt16 selector, UInt32* dataP)

Parameters [in]
selector

[out] dataP

Selector for the desired attribute

Pointer to UInt32, to contain returned the data

28

Tapwave Programmer’s Reference

Result errNone – Succeeded.

statErrNoStatusBar - Device does not support a Status Bar.

statErrInvalidName - Selector is not valid.

Pre-
Conditions

The Status Bar must be initialized.

Side
Effects

None

Comments The following selectors are supported:

#define statAttrBarVisible 0 // Status Bar is visible
#define statAttrDimension 1 // bounds of Status Bar

window
If selector is statAttrBarVisible, the value pointed at by dataP is
set to 0 if the Status Bar is hidden, and set to 1 if the Status Bar is
showing.

If selector is statAttrDimension, dataP is treated as a pointer to
two UInt16’s. The first UInt16 is set to the width of the Status Bar and
the second is set to the height of the Status Bar based on the standard
Palm OS coordinate system. The most common Status Bar size is 160x14.

Header StatusBar.h

Constants #define statAttrBarVisible 0 // Status Bar is visible
#define statAttrDimension 1 // bounds of Status Bar

window

3.4.4.1Handedness Preference
This new system preference is available to control left- or right-handed preference.

UInt32 handedness = PrefGetPreference(prefHandednessChoice);

Handedness is now one of prefRightHanded or prefLeftHanded.

To change the handedness preference, call:

UInt32 handedness = prefRightHanded; // or prefLeftHanded
PrefSetPreference(prefHandednessChoice, handedness);

29

Tapwave Programmer’s Reference

Note: In the Tapwave additions to Palm OS 5.2, the handedness preference is NOT
part of the system preference structure, and you cannot get or set the value
using PrefSetPreferences or PrefGetPreferences. Use the one-at-a-
time singular version of the preferences function instead. For additional
information, see “Chapter 43, Preferences” in the Palm OS Programmer's API
Reference .

30

http://www.palmos.com/dev/support/docs/palmos/Preferences.html

Tapwave Programmer’s Reference

3.4.5.Tapwave Input API
Note: All Tapwave Input APIs are non-blocking.

TwInputOpen

Purpose Create an input event queue.

Prototype Err TwInputOpen(TwInputHandle* queue, const Char* name,
const Char* mode);

Parameters [out]
queue

The newly created input event queue.

 [in] name The name of the input queue. Must be "twinput".

 [in] mode The mode of the input queue. Must be “r”.

Result errNone – Succeeded.

Post-
Conditions

A queue has zero capacity when first created. Applications use the
TwInputSetCapacity API to specify the number of events it should
hold.

31

Tapwave Programmer’s Reference

Comments This function creates an input event queue, which can be used to receive
all user input on the device. Unlike most event systems, which use
different events for different user input devices, the Tapwave system
delivers all user inputs in one notification event. Applications use the
TwInputSetFormat API to specify the user events they want
notification of, and the desired format.

The input event queue does not guarantee thread-safety. If an
application needs to access an event queue from multiple threads at the
same time, it must use proper thread synchronization, otherwise the
result is undefined.

IMPORTANT NOTES:The Tapwave input interface may be implemented
with either the user-level library or kernel-level driver. If the interface is
implemented using the library, it may crash upon invalid arguments, such
as bad pointers. This behavior is similar to the C runtime library, such as
memcpy(). If the interface is implemented using the kernel-level driver,
it returns EBADF for invalid handle, EFAULT for invalid memory address,
and EINVAL for other invalid arguments. This behavior is similar to UNIX
system calls, such as read().

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
// Create input queue
if (TwInputOpen(&queue, “twinput”, “r”) != errNone) {
 // error
}
// Close input queue
TwInputClose(queue);

TwInputClose

Purpose Close an input event queue.

Prototype Err TwInputClose(TwInputHandle queue);

Parameters [in]
queue

The event queue to close.

Result errNone – Succeeded.

32

Tapwave Programmer’s Reference

Pre-
Conditions

It is not necessary to deactivate the input queue before closing it.

Comments This function closes the event queue. Any pending events are lost. Future
user input is sent to the Palm OS event queue, which can be retrieved
using the Palm OS EvtGetEvent API.

NOTE: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Close input queue
TwInputClose(queue);

TwInputActivate

Purpose Activate an input event queue.

Prototype Err TwInputActivate(TwInputHandle queue);

Parameters [in]
queue

The event queue to activate.

Result errNone – Succeeded.

EBUSY – An input queue is already activated.

33

Tapwave Programmer’s Reference

Comments This function acquires or activates the event queue. All future user input
is sent to this event queue instead of the system event queue. There are
certain events that are not sent to a Tapwave event queue, such as power
switch. Applications should use the Palm OS event queue for these
events.

At any given time, only one event queue can be active. Trying to activate
a second event queue will always fail. Once an event queue is activated,
it receives all user input. For each event received by the queue, a key
event posts to the Palm OS event queue. This event is a special
keyDownEvent with following information: ascii = vchrInput,
keyCode = 0, modifiers = commandKeyMask.

IMPORTANT NOTE: An application should only activate the input queue
when it owns the focus form, and deactivate the queue immediately when
it receives the winExitEvent. Otherwise it will block other forms from
receiving regular events, which will in fact hang the entire system.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Activate input queue
if (TwInputActivate(queue) != errNone) {
 // error
}
...
// Deactivate input queue
TwInputDeactivate(queue)
// Close input queue
TwInputClose(queue);

TwInputDeactivate

Purpose Deactivate an input event queue .

Prototype Err TwInputDeactivate(TwInputHandle queue);

34

Tapwave Programmer’s Reference

Parameter
s

[in]
queue

The event queue to deactivate.

Result errNone – Succeeded.

Comments This function deactivates the event queue. All future user input is sent to
the system event queue. Deactivating an event queue does not remove
pending events from the queue. Applications can still use TwInputRead
to retrieve pending events, or TwInputPoll to check the current user
input state.

IMPORTANT NOTE: An application should deactivate the queue when it
receives winExitEvent.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Activate input queue
TwInputActivate(queue);
...
// Deactivate input queue
TwInputDeactivate(queue)
// Close input queue
TwInputClose(queue);

TwInputGetPeriod

Purpose Get the polling period of an input event queue.

Prototype Err TwInputGetPeriod(TwInputHandle queue, Int32*
milliSeconds);

Parameter
s

[in]
queue

The event queue to query.

35

Tapwave Programmer’s Reference

 [out]
milliSeco
nds

The polling period in milliseconds.

Result errNone – Succeeded.

Comments The polling period is only significant to analog input devices, such as a
navigator. The buttons and pen typically generate events during state
transitions, regardless of the polling period. Applications can choose to
use TwInputPoll to poll the current navigator status instead of using
automatic polling.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
Int32 millis;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Query the polling period
TwInputGetPeriod(queue, &millis);
// Close input queue
TwInputClose(queue);

TwInputSetPeriod

Purpose Set the polling period of an input event queue.

Prototype Err TwInputSetPeriod(TwInputHandle queue, Int32
milliSeconds);

Parameter
s

[in] queue The event queue to query.

 [in]
milliSeconds

The polling period in milliseconds.

36

Tapwave Programmer’s Reference

Result errNone – Succeeded.

Comments Set the polling period for analog input devices, such as a navigator. The
system polls the analog device at the specified polling period, and
generates an event if it is engaged. For most analog devices, the system
uses a minimal threshold to avoid spurious events: If the user touches the
navigator only slightly, the system does not generate an event.

Note: If the milliSeconds is <= 0, it disables automatic input polling.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Set the polling period to 200 ms
if (TwInputSetPeriod(queue, 200) != errNone) {
 // error
}// Close input queue
TwInputClose(queue);

TwInputGetCapacity

Purpose Get the capacity of an input event queue.

Prototype Err TwInputGetCapacity(TwInputHandle queue, Int32*
capacity);

Parameter
s

[in]
queue

The event queue to query.

 [out]
capacity

The capacity of input event queue.

Result errNone – Succeeded.

37

Tapwave Programmer’s Reference

Comments The default capacity is zero. Applications should use explicit polling for
zero-capacity queues. The capacity is measured in number of events, not
the actual internal buffer size.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
Int32 capacity;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Get the queue’s input capacity
if (TwInputGetCapacity(queue, &capacity) != errNone) {
 // error
}
…
// Close input queue
TwInputClose(queue);

TwInputSetCapacity

Purpose Set the capacity of an input event queue.

Prototype Err TwInputGetCapacity(TwInputHandle queue, Int32
capacity);

Parameter
s

[in]
queue

The event queue to set capacity for.

 [in]
capcity

The new capacity for the input event queue (in
number of events).

Result errNone – Succeeded.

38

Tapwave Programmer’s Reference

Comments The default queue capacity is zero. Capacity must be between 0 and
16, inclusive. Creating a deep event queue is usually not necessary, as
event queues do not usually fill. Note that if an application cannot
handle events promptly, a deep event queue will not help. Instead,
emphasis should be placed on improving overall application
performance.

If capacity <= 0, it disables event queuing, but the application can
still use TwInputPoll() to query current device input state.

 The application cannot change capacity while an input queue is
active.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Sample TwInputHandle queue;
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Set queue capacity to 10 events.
if (TwInputSetCapacity(queue, 10) != errNone) {
 // error
}
// Close input queue
TwInputClose(queue);

TwInputGetFormat

Purpose Get the format of an input event queue.

Prototype Err TwInputGetFormat(TwInputHandle queue, Int32*
formats, Int32* sizeInBytes);

Parameter
s

[in] queue The event queue to query.

39

Tapwave Programmer’s Reference

 [out]
formats

The format buffer of the input event queue.

 [in/out]
sizeInBytes

The size of the formats argument in bytes. On return, it
contains the actual format size. It is possible that the
actual format size exceeds the provided buffer’s size. In
this case, only a partial format is copied into the
provided buffer.

Result errNone – Succeeded.

Comments The size of the data to be returned in the formats buffer cannot be known
ahead of time. Therefore, the you should make a best guess for
sizeInBytes. If sizeInBytes is not big enough, the function will
return a value in sizeInBytes that is larger than the size of the buffer
passed in. In this event, you should reissue the call with a larger buffer.

See the TwInputSetFormat

 comments for additional information.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Constants See Inp later in this guide.

40

Tapwave Programmer’s Reference

Sample #define NUMFORMATS 32
TwInputHandle queue;
Int32 actualSize;
Int32 size = NUMFORMATS;
Int32 *formats = malloc(size * sizeof(Int32));
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Query the format
TwInputGetCapacity(queue, formats, size, &actualSize);
If (actualSize > size) {
 // formats buffer not big enough, try again
 size = actualSize;
 free (formats);
 formats = malloc(size * sizeof(Int32));
 TwInputGetCapacity(queue, formats, size,
&actualSize);
}
// Close input queue
TwInputClose(queue);

TwInputSetFormat

Purpose Set the format of an input event queue.

Prototype Err TwInputSetFormat(TwInputHandle queue, Int32*
formats, Int32 sizeInBytes);

Parameter
s

[in] queue The event queue to query.

 [in]
formats

The format buffer of input event queue.

 [in]
sizeInBytes

The size of format buffer in bytes.

Result errNone – Succeeded.

41

Tapwave Programmer’s Reference

Comments Tapwave input events do not have a fixed format. Each application must
specify the format to be used. Tapwave events are composed of arrays of
Int32 fields. Each field represents an input feature, such as a button
press, mouse position, navigator button, navigator position, digitizer
output, or a physical volume control setting. In addition, there are
special formats that can be requested such as a time stamp (in
milliseconds since system boot) and a sequence number (which
increments by one for each event on the device). For a list of input
feature constants, see Inp later in this guide.

Applications must call this function to set the event format before using
the input queue. The format of an input queue can be changed more than
once. Whenever the format is changed, the input queue is flushed, and
all pending events are discarded.

Applications can not change the event format while an input queue is
active.

 TwInputPoll()increments the event sequence number by one.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Constants See Inp later in this guide.

Sample struct MyEvent {
 Int32 joyX;
 Int32 joyY;
};
TwInputHandle queue;
Int32 formats[] = { twInputNavX, twInputNavY };
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Set the input queue format
TwInputSetFormat(queue, formats, sizeof(formats));
// Close input queue
TwInputClose(queue);

TwInputPeek

Purpose Peek an input event queue.

42

Tapwave Programmer’s Reference

Prototype Err TwInputPeek(TwInputHandle queue, TwEvent* event,
Int32 sizeInBytes);

Parameter
s

[in] queue The event queue to query.

 [out] event (optional) The event buffer.

 [in]
sizeInBytes

The size of event in bytes.

Result errNone – Succeeded.

EAGAIN – No event is available.

EINVAL – The event size does not event format.

Pre-
Conditions

Before an application can call TwInputPeek(), it must set event
format, set capacity > 0, and activate the event queue. Otherwise, the
call will fail.

For a zero-sized event queue, applications should use TwInputPoll().

Comments Peek at next event. The event is not removed from the queue. If no
event is available, EAGAIN is returned. The event size must match the
event format specified by last TwInputSetFormat call.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Constants See TwInput.h for more information.

43

Tapwave Programmer’s Reference

Sample struct MyEvent {
 Int32 joyX;
 Int32 joyY;
};
TwInputHandle queue;
MyEvent event;
Int32 formats[] = { twInputNavX, twInputNavY };
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Query the format
TwInputSetFormat(queue, formats, sizeof(formats));
// Activate queue
TwInputActivate(queue);
// Peek event
if (TwInputPeek(queue, &event, sizeof(event)) ==
errNone) {
 // There is data in event buffer.
}
// Close input queue
TwInputClose(queue);

44

Tapwave Programmer’s Reference

TwInputRead

Purpose Read event from input event queue.

Prototype Err TwInputRead(TwInputHandle queue, TwEvent* event,
Int32 sizeInBytes);

Parameter
s

[in] queue The event queue to query.

 [out] event (optional) The event buffer.

 [in]
sizeInBytes

The size of event in bytes.

Result errNone – Succeeded.

EAGAIN – No event available.

EINVAL – The event size does not match the event format.

Pre-
Conditions

Before an application can call TwInputRead(), it must set event
format, set capacity > 0, and activate the event queue. Otherwise, the
call will fail.

For a zero-sized event queue, applications should use TwInputPoll().

Comments Read next event, and remove it from the queue. If an event is not
available, error is returned. The event buffer cannot be NULL, and
sizeInBytes must match the event format specified by the last call to
TwInputSetFormat.

NOTE: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h))

Constants See TwInput.h for more information.

45

Tapwave Programmer’s Reference

Sample struct MyEvent {
 Int32 joyX;
 Int32 joyY;
};
TwInputHandle queue;
MyEvent event;
Int32 formats[] = { twInputNavX, twInputNavY };
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Set the input event queue format
TwInputSetFormat(queue, formats, sizeof(formats));
// Activate queue
TwInputAcquire(queue);
// Read event
TwInputRead(queue, &event, sizeof(event));
// Close input queue
TwInputClose(queue);

TwInputPoll

Purpose Poll user input through an event queue .

Prototype Err TwInputPoll(TwInputHandle queue, TwEvent* event,
Int32 sizeInBytes);

Parameter
s

[in] queue The event queue to query.

 [out] event (optional) The event buffer.

 [in]
sizeInBytes

The size of event in bytes.

Result errNone – Succeeded.

EINVAL – The event size does not match the event format.

46

Tapwave Programmer’s Reference

Comments This function polls all input devices and returns the event using the event
queue format. It does not change the event queue status in any way. The
event buffer cannot be NULL, and the event sizeInBytes must match
the event format specified by the last call to TwInputSetFormat. The
input queue does not need to be active.

TwInputPoll()increments the event sequence number by one.

Note: Passing an invalid argument to this function may cause the
application to crash.

Header TwInput.h (included by Tapwave.h)

Constants See TwInput.h for more information.

Sample struct MyEvent {
 Int32 joyX;
 Int32 joyY;
};
TwInputHandle queue;
MyEvent event;
Int32 formats[] = { twInputNavX, twInputNavY };
// Create input queue
TwInputOpen(&queue, “twinput”, “r”);
// Set the input event queue format
TwInputSetFormat(queue, formats, sizeof(formats));
// Poll event queue
if (TwInputPoll(queue, &event, sizeof(event)) !=
errNone) {
 // error
}// Close input queue
TwInputClose(queue);

TwInputControl

Purpose Control the input devices .

Prototype Err TwInputControl(TwInputHandle queue, Int32 command,
void* data, Int32 sizeInBytes);

Parameter [in] queue The event queue to query.

47

Tapwave Programmer’s Reference

s

 [in]
command

The control command.

 [in/out]
data

The control data.

 [in]
sizeInBytes

The size of control data.

Result errNone – Succeeded.

ENOSYS – Not Implemented.

Comments This API is reserved for future use.

Header TwInput.h (included by Tapwave.h)

Constants See TwInput.h for more information.

3.4.6.Input Event Constants
Tapwave-platform applications specify the events for which they want notification.
The table below is a list of the input feature events applications can request. Call the
function TwInputSetFormat to request event notifications, and use the constants
below in the formats argument.

Input Selector Data
Type

Comment

twInputSequence Int32 Sequence number of the event. Starts at 0 when
the input queue is activated, may roll over and
become negative over time.

twInputTimeStamp Int32 The system tick counter when the event occurred.
May roll over and become negative over time.

48

Tapwave Programmer’s Reference

twInputPenX
twInputPenY

Int32 Pen location in standard coordinate system,
limited by screen size and orientation.

twInputPenZ Int32 Pen pressure, which ranges from 0 (pen fully up)
to 0x7FFF (pen fully down). On most systems, only
binary pen down information is available, in which
case treat 0 as pen up and non-zero as pen down.

twInputNavX
twInputNavY

Int32 Joystick positions range from –32767 to +32767. 0
means center position.

twInputNavCircR
twInputNavCircTheta
twInputNavCircX
twInputNavCircY

Int32 Joystick positions in polar coordinates. R is the
radius, or offset from center, in the range 0 to
+32767. Theta is the angle in degrees from 0 to
359, measured counter clockwise from horizontal
to the right. CircX and CircY are the
circularized X and Y value – that is, precomputed
R * cos(Theta) and R * sin(Theta), but
done efficiently using only integer math.

twInput4Way Int32 Joystick position interpreted as 4-way navigator,
one of:
 twNavigatorCenter
 twNavigatorUp
 twNavigatorRight
 twNavigatorDown
 twNavigatorLeft

twInput8Way Int32 Joystick position interpreted as 8-way navigator,
one of:
 twNavigatorCenter
 twNavigatorUp
 twNavigatorUpRight
 twNavigatorRight
 twNavigatorDownRight
 twNavigatorDown
 twNavigatorDownLeft
 twNavigatorLeft
 twNavigatorUpLeft

49

Tapwave Programmer’s Reference

twInputActionA
twInputActionB
twInputActionC
twInputActionD

Int32 The state of any of the action buttons. 0 means
button is up. Non-zero means button is down. A is
the topmost action button, then proceeding
clockwise.

twInputTriggerLeft
twInputTriggerRight

Int32 The state of the left and right triggers on the
device edge. 0 means button is up. Non-zero
means button is down.

twInputNavUp
twInputNavDown
twInputNavLeft
twInputNavRight

Int32 The state of the navigator in different directions.
0 means the navigator is in that direction. Non-
zero means the navigator is not in that direction.

twInputNavSelect Int32 Pushing down on the navigator triggers the select
button. 0 means button is up, non-zero means
button is down. (Note that pushing in on the
navigator can easily change the state of the
twInputNavX and twInputNavY positions.)

twInputFunction Int32 The function button is near the navigator. 0 means
button is up, non-zero means button is down.

twInputPower
twInputLaunch
twInputBluetooth

Int32 These buttons are not meant for gaming, but
reserved for device use. 0 means button is up,
non-zero means button is down. For arcade-style
games the twInputPower button may be used as
a pause button.

3.5.Gaming API

3.5.1.High Score

3.5.1.1Registering a game with the high score server

TwHighScoreRegister

Purpose Register a new game application with the high score manager.

50

Tapwave Programmer’s Reference

Prototype Err TwHighScoreRegister(
 UInt32 creatorID,
 UInt16 scoreType,
 UInt16 numLocalScoresToKeep,
 UInt16 numServerScoresToKeep,
 Boolean reportScoresToServer,
 Char *gameName)

Parameter
s

creatorID The creator ID for the game application itself, used
as the key for tracking scores.

 scoreType The secondary identifier for games that need to
keep more than one type of score. Pass 0 if not
needed.

 numLocalScores
ToKeep

How many scores reported on the local device to
keep.

 numServerScore
sToKeep

How many scores from the server to keep.

 reportScoresTo
Server

Upload the high score to the Tapwave score server
website during sync, only if the user has registered
for that service. Normally true.

 gameName The name of the game as a user-visible formatted
string.

Result errNone – Succeeded.

Pre
Conditions

None

Post
Conditions

None

51

Tapwave Programmer’s Reference

Side
Effects

Registers a game with the high score manager, or updates the settings if
the game is already registered. Only one registration exists for a given
game. If a game re-registers with fewer scores than the previous
registration, any extra scores are deleted.

Comments A game normally needs to register with the high score manager only once
per device, but there is no harm in calling register again with the same
settings. Changing the registration settings by calling this function may
change the state of other records in the database, e.g. lowering the
number of high scores may cause high score records to be deleted.

Header TwHighScore.h

TwHighScoreUnregister

Purpose Unregister a game application from the high score manager.

Prototype Err TwHighScoreRegister(UInt32 creatorID, UInt16
scoreType);

Parameter
s

creat
orID

The creator ID for the game application itself, used as the key
for tracking scores.

 score
Type

The secondary identifier for games that need to keep more than
one type of score. Pass 0 if not needed.

Result errNone – Succeeded.

twHighScoreErrNotRegistered – game and score type not registered

Pre
Conditions

None

Post
Conditions

None

52

Tapwave Programmer’s Reference

Side
Effects

Removes the game and any high scores from the high score registry.
Normally called only when the user is deleting a game forever. Only the
scores for the given secondary type are removed, to completely delete all
game data this function must be called for every score type.

Comments This may also be useful when a game needs to reset the state of the high
score database, e.g. when installing an update. All existing high score
records are removed as a side effect.

Header TwHighScore.h

3.5.1.2Reporting a high score

TwHighScoreType

Purpose Structure to report high scores to the high score manager.

Prototype typedef struct TwHighScoreTag {
UInt32 score;
UInt32 checksum;
UInt32 dateAndTime;
UInt16 pad;
Char *userString;

} TwHighScoreType;

Parameter
s

score A normalized field containing the high score, used for
sorting.

 checksum A checksum value which can be used to validate the
score.

 dateAndTime The time in seconds (as returned from TimGetSeconds)
when the score was achieved. In local time zone for the
device.

 pad In order for the userString pointer to be 4-byte
aligned it’s necessary to insert 2 bytes of pad after the
DateTimeType. Write 0’s here.

53

Tapwave Programmer’s Reference

 userString The user visible formatted version of the score. If not
needed, it’s OK to pass NULL. If you pass a record with
an empty string (“”) when you register the score, you
will get back a NULL userString pointer when you
read the score.

Comments The structure is used to report high score data about a particular game
using TwHighScoreReport. A UInt32 is provided as a sort key for the
high scores, it should be a normalized version of the high score such that
larger numbers are better scores.

Header TwHighScore.h

TwHighScoreReport

Purpose Report high score to High Score Manager.

Prototype Err TwHighScoreReport(UInt32 creatorID, UInt16
scoreType

 TwHighScoreType * highScoreP);

Parameter
s

creatorID Creator ID of the application reporting the high score.

 scoreType The secondary identifier for games that need to keep
more than one type of score. Pass 0 if not needed.

 highScoreP Pointer to structure containing the high score data. See
Error! Reference source not found. above.

Result errNone – Succeeded.

twHighScoreErrNotRegistered – game and score type not registered

Pre
Conditions

Game must be registered with the high score server.

54

Tapwave Programmer’s Reference

Side
Effects

Enters a record into the High Score Manager database. May cause existing
high scores to be removed if there are more than the max scores to keep
already registered. On the next HotSync, the High Score Conduit sends
the highest local score and user information to the Tapwave.com server,
if the user has registered.

Comments highScore is a pointer to a TwHighScoreType structure. In future
versions, this data may be signed or encrypted to prevent cheating.

Header TwHighScore.h

3.5.1.3Reading high scores

TwHighScoreSummaryType

Purpose Structure to get aggregate of high score data in high score manager.

Prototype typedef struct TwHighScoreSummaryTag {
UInt16 numLocalScoresToKeep;
UInt16 numServerScoresToKeep;
Boolean reportScoresToServer;
UInt8 pad[3];
UInt32 timeSynced;
Char *gameName;
UInt16 numLocalScores;
UInt16 numServerScores;
UInt32 highestLocalScore;
UInt32 lowestLocalScore;
UInt32 highestServerScore;
UInt32 lowestServerScore;

} TwHighScoreSummaryType;

Parameter
s

numLocalScoresToKeep The maximum number of local scores to
keep, as passed to
TwHighScoreRegister

 numServerScoresToKeep The maximum number of server scores to
keep, as passed to
TwHighScoreRegister

55

Tapwave Programmer’s Reference

 reportScoresToServer Whether or not to report scores to the
server, as passed to
TwHighScoreRegister

 pad Padding needed for compatible alignment
with ARM

 timeSynced The time in seconds that the high scores
were sent to the desktop via HotSync, for
transmission to Tapwave.com. The time is
reported in the local time zone for the
device. 0 if never synced.

 gameName A pointer to the name of the game, as
passed to TwHighScoreRegister.

 numLocalScores The number of high scores available in the
local pool.

 numServerScores The number of local high score records
that exist from the server.

 highestLocalScore The highest score in the local pool, as
reported with TwHighScoreRegister

 lowestLocalScore The lowest high score record saved on the
device. (Normally there would be no need
to register a new high score if it was
below this value).

 highestServerScore The best score reported to the server (as
of the last sync date).

 lowestServerScore The lowest score saved from the server
(as of the last sync date).

56

Tapwave Programmer’s Reference

Comments The structure is used to get information about the high scores for a
particular game (and score type) from the database. It provides a quick
summary and is used for successive calls to TwHighScoreGetDetails.

Header TwHighScore.h

TwHighScoreGetSummary

Purpose Get info about the current high scores registered with the high score
manager.

Prototype TwHighScoreSummaryType *TwHighScoreGetSummary (Uint32
creatorID, UInt16 scoreType);

Parameter
s

creatorID Creator ID of the application for which we want the
last high score.

 scoreType The secondary identifier for games that need to keep
more than one type of score. Pass 0 if not needed.

Result Pointer to a newly allocated chunk containing the high score summary.
The memory is owned by the calling application, and must be disposed of
with MemPtrFree when done. The gameName pointer within the
returned structure points to memory that is within the chunk returned, so
one call to MemPtrFree deletes both the structure and the string.

If game and score type is not registered, the function returns NULL.

57

Tapwave Programmer’s Reference

Comments Use this function to get overall info about the data contained in the high
score manager. Use TwHighScoreGetDetails to get details about
individual high scores after calling this function.

HighScoreSummaryP->numLocalScores will never be larger than the
numLocalScoresToKeep passed in the most recent call to
TwHighScoreRegister.

HighScoreSummaryP->numServerScores will never be larger than
the numServerScoresToKeep passed in the most recent call to
TwHighScoreRegister.

The server high score count, high and low scores, and time synced values
will all be 0 if there are no server scores available. This may happen if
the user has never successfully synced with the Tapwave server or if the
user has not registered with the server.

Header TwHighScore.h

TwHighScoreGetDetails

Purpose Get a high score record from the database.

Prototype TwHighScoreType *TwHighScoreGetDetails (Uint32
creatorID, UInt16 scoreType, ScorePoolType which,
UInt16 index);

Parameter
s

creatorID Creator ID of the application for which we want the
high score.

 scoreType The secondary identifier for games that need to keep
more than one type of score. Pass 0 if not needed.

 which twHighScorePoolLocal or
twHighScorePoolServer.

 index The index number for which score to get, from 0 to
countServerScores-1 or countLocalScores-1.
If the index is out of range NULL.

58

Tapwave Programmer’s Reference

Result Points to a newly allocated (with MemPtrNew) chunk that contains a
TwHighScoreType structure with the data. The string pointers in the
structure will point to memory in the newly allocated chunk. The calling
application is responsible for calling MemPtrFree to dispose of this
memory when it is done.

If game and score type is not registered, the function returns NULL.

Side
Effects

Allocates memory for the new score record.

Header TwHighScore.h

Sample TwHighScoreType *scoreP = NULL;
UInt32 goal;

if (scoreP == TwHscGetScore(myCreator, 0,
TwHighScorePoolLocal , 0)) {
 goal = scoreP->score; // highest score!
 MemPtrFree(scoreP);
}

3.5.1.4

 3.5.1.4Tournament Scores

TwHighScoreGetTournament

Purpose Structure to get aggregate of high score data in high score manager.

Prototype UInt16 TwHighScoreGetTournament(UInt32 creatorID,
UInt16 scoreTypeIn, Char *code);

Parameter
s

creatorID The creator ID of the game.

59

Tapwave Programmer’s Reference

 scoreTypeIn If >1, pre-loads the tournament code with the right
value for this score type. If 0, uses the passed code
as the initial value and prompt the user. If 1, just
decodes the passed code but does not run any UI.

 code An array of 4 Char values which holds the initial
code on entry, and which is updated to contain the
user code on exit. (Note that this may be changed
even if the user does not enter a valid code and
cancels.)

Result The scoreType that the user enters or which is decoded based on the
code chars and creatorID. Returns 0 (invalid tournament code) if the
user cancels or the code is invalid.

Comments This multi-purpose function is used to run the tournament code UI.
Normally it is called with a code array set to all 0’s and a scoreTypeIn
of 0. In this mode, the user is prompted to enter the tournament code,
and valid tournament codes are translated to a non-zero score type and
returned. If an invalid tournament code is entered, an error is presented
to the user and they will correct the code. The user may also cancel the
dialog, in which case 0 is returned.

This function can also be used to decode tournament codes that are
gathered via some game-specific UI. To do this, pass 1 as the
scoreTypeIn, and load the code array with the alphanumerics gathered
elsewhere. Any letter or number is allowed, lowercase letters are treated
as uppercase. Letter ‘i’ is treated as number ‘1’, and letter ‘o’ is treated
as number ‘0’.

Finally, this function can be used to generate the tournament code for a
given score type. To do this, pass scoreTypeIn > 1. In this mode,
the initial code value is ignored, and instead the UI is pre-loaded with the
tournament code for the given scoreType. The rest of the UI runs
normally, and on return (assuming the user hits Done), the result matches
scoreTypeIn and the code array has been filled with the normalized
tournament code. (You may wish to use the high score test application to
search for interesting tournament codes for your game.)

Header TwHighScore.h

60

Tapwave Programmer’s Reference

3.5.2.Other Useful Functions

 3.5.2.1Creating Attractive Graphic Controls
One limitation of the Palm OS UI layer has been that it is challenging to create really
nice-looking graphic controls without implementing them entirely as gadgets.
Tapwave has updated the UI layer to make it a little bit easier. You can use the
function CtlSetFrameStyle to change the style of a control’s border. The most
useful frame style is noFrame. Graphic controls with no frame and that provide both
a normal and a selected graphic are further modified to never erase the area under
the control’s bounding rectangle. The result is that with appropriate transparency in
the graphics, you can create buttons that are non-rectangular. (Although the active
area for hit testing and pen interaction will always be a rectangle.)

CtlSetFrameStyle

Purpose Change the frame style of a button control.

Prototype void CtlSetFrameStyle(ControlType *ctlP,
ButtonFrameType newStyle)

Parameter
s

ctlP A pointer to the control object to modify.

 newStyle The new style for the frame, mostly likely
noButtonFrame.

Comments Change the control frame attributes to match the new value. This does
not draw the control or change the visibility or any other control
attribute. It is most commonly used during form initialization before the
form has drawn. This function can be called from native or 68K
applications.

Header TwOSAdditions.h, see also Control.h

Sample ControlType *ctlP;
ctlP = FrmGetObjectPtr(frm, FrmGetObjectIndex(frm,
SampleGraphicPushButton));
CtlSetFrameStyle(ctlP, noButtonFrame);

61

Tapwave Programmer’s Reference

3.5.2.2

 3.5.2.2Getting Correct Bitmap Dimensions
With many different bitmap formats and family types, it can often be challenging to
figure out just how big a bitmap really is.

WinGetBitmapDimensions

Purpose Return the width and height of any bitmap, or any bitmap family, in the
current coordinate system.

Prototype void WinGetBitmapDimensions(BitmapType *bmP, Coord
*widthP, Coord *heightP)

Parameter
s

bmP A pointer to any bitmap or bitmap family.

 widthP (Output) A pointer to a value filled in with the
bitmap’s effective width in the current coordinate
system..

 heightP (Output) A pointer to a value filled in with the
bitmap’s effective height in the current coordinate
system.

Comments Returns the width and height of any bitmap (68K or ARM) in the current
coordinate system. Can be called from native or 68K code.

Header TwOSAdditions.h

3.5.3.Determining the location of VFS Volumes
In order to provide attractive user interfaces, it is often useful to have a physical
indication of where a VFS volume resides. For example, a volume on a RAM card in
the left slot might have a different icon from one in the right slot, which might be
different again from a volume mounted on a network file system or on internal
memory.

62

Tapwave Programmer’s Reference

TwGetSlotNumberForVolume

Purpose Return the slot number for a given VFS volume.

Prototype Int16 TwGetSlotNumberForVolume(UInt16 volRef)

Parameter
s

volRef A volume reference number as returned from
VFSVolumeEnumerate.

Result 0 – Volume is not stored on a card (network, internal, etc.)
1 – Volume is stored on card 1.
2 – Volume is stored on card 2.

Comments Returns the slot number for a given volume. Depends on the VFS
implementation properly filling out the VFSVolumeInfo structures and
on Tapwave’s slot drivers. Note that in the future, some cards may
contain more than one volume. Therefore, code should not assume that
finding one volume on a card slot means there are no others. This
function can be called from 68K or native applications.

Header TwOSAdditions.h

3.5.3.1Installing Databases from Compressed Images
This simple function combines the gzip library with DmCreateDatabaseFromImage
to provide an easy way to uncompress and install a Palm OS database into the storage
heap.

TwCreateDatabaseFromImage

Purpose Uncompress a gzip Palm OS database and installs it in the storage heap.

Prototype Err TwCreateDatabaseFromImage(void *imageP)

Parameter
s

imageP A pointer to a chunk of memory containing the
(probably compressed) .prc or .pdb byte stream.

63

Tapwave Programmer’s Reference

Result errNone – Succeeded. Other errors per
DmCreateDatabaseFromImage

Comments This function works exactly like DmCreateDatabaseFromImage, except
that it can also handle binary files compressed with gzip. It expands the
binary into the dynamic heap before installing it, so there is a limit on
the largest database that can be installed with this method. This function
is most useful for reducing the amount of data that is moved to the
device when installing a new application or other data file. This function
can be called from 68K or native applications.

Header TwOSAdditions.h

3.5.3.2Showing Images for Hardware Buttons
Tapwave has created some standard graphics that can be used in the user interface
where images of the gaming buttons are required, e.g. for control customization
interfaces.

TwGetGraphicForButton

Purpose Return an image that can be used to help describe a hardware button.

Prototype const BitmapType *TwGetGraphicForButton(WChar chr,
Int32 size)

Parameter
s

chr The character code that the button produces
when pressed, see the file TwChars.h for a list.
Note that not all characters have graphics.

 size The size of the graphic to return. Note that only
a very small set of sizes is supported.

Result A pointer to a read-only bitmap indicating the graphic button.

Comments Note that this function returns a bitmap pointer, not a resource number,
and so you must draw the image yourself with WinDrawBitmap.

64

Tapwave Programmer’s Reference

Header TwOSAdditions.h

3.6.Device APIs

3.6.1.Attention Manager Extensions
The following constants will be added to allow the Extensions Manager to use the
Tapwave device rumbler to get the user’s attention.

3.6.1.1New AttnFlagsTypes
kAttnFlagsVibrateBit 0x0004 Triggers vibration (for
compatiblity)

3.6.2.General Virtual Device Interface
In order to provide general support for simple hardware on the Tapwave device, such
as the rumbler, Tapwave has defined a virtual device model. This model is controlled
through simple open, close, read, write, getProperty, and setProperty calls,
which are defined below. Devices are named by string constants defined in the system
header TwVirtualDevice.h. For the Zodiac device, only the rumbler is defined.

TwDeviceOpen

Purpose Open a virtual device.

Prototype Err TwDeviceOpen (TwDeviceHandle* handle,
 const char* name, const char* mode);

Parameter
s

[out]
handle

Pointer to TwDeviceHandle descriptor used in other
calls to identify the device opened.

 [in] name Character string name of the device to open.

 [in] mode Mode to open device: “r” read, “w” write, “rw” read and
write.

65

Tapwave Programmer’s Reference

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

Comments Open a virtual device, identified in name, using the access specified in
mode. handle is initialized on return, and is used in subsequent calls to
identify the device opened.

Header TwDevice.h (included by Tapwave.h)

66

Tapwave Programmer’s Reference

TwDeviceClose

Purpose Close a virtual device.

Prototype Err TwDeviceClose (TwDeviceHandle handle);

Parameter
s

[in]
handle

A TwDeviceHandle descriptor identifying the device to
close.

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

Comments Close the virtual device associated with the TwDeviceHandle handle,
which was opened by a prior TwDeviceOpen call. Shut down the device
and free up any associated resources

Header TwDevice.h (included by Tapwave.h)

TwDeviceRead

Purpose Read data from a virtual device.

Prototype Err TwDeviceRead (TwDeviceHandle handle,
 void* buf, Int32* len);

Parameter
s

[in]
handle

A TwDeviceHandle descriptor to read from, which was
opened by a prior TwDeviceOpen call.

 [out] buf Pointer to buffer to return the data read from the device.

67

Tapwave Programmer’s Reference

 [in/out]
len

Length of buffer passed in.

On return, the number of bytes actually read.

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

Comments Read data from device handle, store in buffer buf of maximum size
len, returning the actual number of bytes read, or a negative number if
an error occurred. Device must have been opened as “r” or “rw”.

Header TwDevice.h (included by Tapwave.h)

TwDeviceWrite

Purpose Write data to a virtual device.

Prototype Err TwDeviceWrite (TwDeviceHandle handle,
 const void* buf, Int32* len);

Parameter
s

[in]
handle

A TwDeviceHandle descriptor identifying the device to
which it is writing.

 [in] buf Pointer to data to be written to device.

 [in/out]
len

Number of bytes to write to device from buf.

On return, number of bytes actually written.

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

68

Tapwave Programmer’s Reference

Comments Write data to the virtual device. The data format is device-specific. The
actual number of bytes written is returned in len, which initially
contains the size of the buf. The device must have been opened as
writeable, using modes “w” or “rw”.

Header TwDevice.h (included by Tapwave.h)

TwDeviceGetProperty

Purpose Get the specified property value for the device.

Prototype Err TwDeviceGetProperty (TwDeviceHandle handle,
 Int32 property, void* buf,

Int32* len);

Parameter
s

[in]
handle

 TwDeviceHandle descriptor identifying the device from
which to get a property.

 [in]
property

Multi-character integer identifying the property whose
value is to be retrieved.

 [out] buf Pointer to buffer in which to store the property’s value.

 [in/out]
len

Size of buf, in bytes. On return, it contains the actual
size of the specified property in bytes. It is possible that
the property size exceeds the provided buffer size. In this
case, ENOMEM is returned and the buffer is filled with a
partial property value.

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

69

Tapwave Programmer’s Reference

Comments Get the specified property value from the virtual device. The return value
is the error code, if any. The property is specified using a multi-character
integer, such as ‘size’ or ‘port’.

Note that each property has a pre-defined size, specified in the header
file for each device (such as TwRumbler.h). If the buffer passed in does
not match the property’s size, an error is returned.

Header TwDevice.h (included by Tapwave.h)

TwDeviceSetProperty

Purpose Set the specified property value for the virtual device.

Prototype Err TwDeviceSetProperty (TwDeviceHandle handle,
 Int32 property, const void* buf,

Int32 len);

Parameter
s

[in]
handle

A TwDeviceHandle descriptor identifying the device
for which the property value should be set.

 [in]
property

Multi-character integer identifying the property whose
value is to be set.

 [out] buf Pointer to buffer containing the property’s value.

 [in] len Size of buf, in bytes.

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

70

Tapwave Programmer’s Reference

Comments Set the specified property value for the virtual device. The return
value is the error code, if any. The property is typically specified
using a multi-character integer, such as ‘size’ or ‘port’.

Note that each property has a pre-defined size, specified in the
header file for each device (such as TwRumbler.h). If the buffer
passed in does not match the expected size of the property, an error
is returned.

Header TwDevice.h (included by Tapwave.h)

TwDeviceControl

Purpose Send arbitrary control command to the virtual device.

Prototype Err TwDeviceControl (TwDeviceHandle handle,
 Int32 cmd, void* buf, Int32 len);

Parameter
s

[in]
handle

TwDeviceHandle descriptor identifying the device to
which a control command is to be sent

 [in] cmd Device-specific selector, specified as a multi-character
integer

 [in/out]
buf

Pointer to the parameter block for the device control
command.

 [in] len Size of buf, in bytes.

Result errNone – Succeeded.

For return values other than errNone, see the system header file
sys_errno.h.

71

Tapwave Programmer’s Reference

Comments Send an arbitrary control command to the virtual device. cmd is a device-
specific selector. buf points to the command parameter block. len is
the size of the parameter block in bytes. The parameter block may be
used as input, output, or both. If the parameter block is not needed,
both buf and len should be set to 0. The return value is the error code.
The cmd control command is specified using multi-character integers,
such as ‘peek’, ‘poll’, ‘push’, ‘pop’, etc.

Note that each command expects a pre-defined size for buf. If the buffer
passed in does not match the expected size, an error is returned. The
commands are defined on a device-by-device basis. See the appropriate
header file for each device (such as TwRumbler.h) for more details.

Header TwDevice.h (included by Tapwave.h)

72

Tapwave Programmer’s Reference

3.6.3.Rumbler Virtual Device

The rumbler device provides a vibration effect to the user. It is implemented as an
off-center weight whose rotation speed and duration can be controlled. The following
describes the parameters needed to control the rumbler through the virtual device
interface. See the file TwVdRumbler.h for more details. A higher-level wrapper
routine may be provided in the future.

Note that three models are supported: the first is to turn on the rumbler, and then
later turn it off. This could be used to have the device buzz while a button is held
down, for example. The second model is to play a rumbler stream from a buffer. This
rumbler stream is an array of UInt8 tuples, the first being a value representing the
relative speed to run the rumbler at (0 meaning off), the second being a duration (in
units of 1/100 second) to run the rumbler. This is used to present a one-time
sensation, such as an explosion in a game. The third model is to play a rumbler
stream repeatedly, until a ‘stop’ command is issued. This model can be used, for
example, to present an ongoing sensation such as driving a vehicle over a rough road.

Even though there is only one Rumbler device on the unit, multiple opens to the
rumbler device will succeed. The handles returned will have different absolute
values, but they all point to a global state which is maintained internally by the
system. Commands to the rumbler from multiple applications will be interleaved,
with subsequent commands overriding earlier ones. i.e., “the last command wins”.

3.6.3.1Sample usage:
#include <Tapwave.h>
// Define an array of structures containing Rumbler play
parameters:
struct TwVirtualDeviceRumbler {
 UInt8 rumbleSpeed; // relative rotation speed, 0 =>
rumbler off.
 // 255 => maximum speed
 UInt8 rumbleDuration; // amount of time, in 1/100 seconds,
for the
 // device to be active
} rumbleStream [] = {{255,10}, {200,20}, {100,20}};
/* NOTE: a better way to do this, to be sure the compiler doesn’t
add padding, is:
 UInt8* rumbleSteam = { ‘\255’,’\10’, ‘\200’,’\20’,
‘\100’,’\20’}; */

const void* buf = rumbleStream;
Int32 len = sizeof(rumbleStream);

TwDeviceHandle handle;

if (TwDeviceOpen (&handle, "vibrator0", "w")) {
 ErrFatalDisplayIf(1, "Missing vibrator!");

73

Tapwave Programmer’s Reference

}
if (TwDeviceControl(handle, 'play', buf, len)) {
 ErrFatalDisplayIf(1, "Cannot control vibrator!");
}
if (TwDeviceClose(handle)) {
 ErrFatalDisplayIf(1, "Cannot close vibrator!");
}

74

Tapwave Programmer’s Reference

3.6.3.2Properties:
The rumbler properties, for device vibrator0, can be accessed through the
TwDeviceGetProperty and TwDeviceSetProperty APIs, detailed above. All
these properties return a UInt8-sized value.

Property Description

‘sped’ The maximum speed of the rumbler device. This is the max
value that can be set by the API.

‘anlg’ A Boolean value; true if the rumbler speed is variable, false if it’s
binary (on/off) only.

‘dura’ Maximum duration of rumbler ON cycle, in 1/100 of a second.

‘plng’ A Boolean value; true if the rumbler is currently playing a
stream, false if not.

Command Description

‘strt’ Command to turn on the rumbler. Must turn it off explicitly
using ‘stop’.

‘stop’ Command to turn off the rumbler, if playing.

‘play’ Command to play a rumbler stream from buf. Note that an error
is returned if the stream size is not a multiple of 2 (streams must
contain pairs of values).

‘rept’ Command to repeatedly play a rumbler stream from buf. Repeat
until a stop command is issued, or another play or rept command
is issued.

‘fast’ Command to turn the rumbler on, fastest speed.

75

Tapwave Programmer’s Reference

‘medi’ Command to turn the rumbler on, medium speed.

‘slow’ Command to turn the rumbler on, slow speed.

76

Tapwave Programmer’s Reference

3.6.4.Audio Amplifier Virtual Device

A simple API is provided to control the muting and bass-boost capabilities of the audio
system on Tapwave devices. See the file TwVdAudioAmp.h for more details.

3.6.4.1Sample Usage

#include <Tapwave.h>

UInt8 muteSpkr;
UInt8 buf;
Int32 len;

TwDeviceHandle handle;

if (TwDeviceOpen (&handle, "audioAmp0", "rw") != errNone) {
 ErrFatalDisplayIf(1, "Missing audio amp!");
}

len = sizeof buf;
if (TwDeviceGetProperty(handle, TW_VD_AUDIOAMP_POWER_UP, &buf,
&len") != errNone) {
 ErrFatalDisplayIf(1, "Cannot get audio amp property!");
}
if(buf == 1){
 Display(“Amp is powered on\n”);
 muteSpkr = 1; // mute the speakers just for fun
 if (TwDeviceSetProperty(handle, TW_VD_AUDIOAMP_MUTE_SPKRS,
&muteSpkr,
 sizeof(muteSpkr)) != errNone)
 ErrFatalDisplayIf(1, "Cannot set audio amp property!");
 else
 Display(“Speakers are now muted, enjoy the silence\n”);
}

if (TwDeviceClose(handle)) {
 ErrFatalDisplayIf(1, "Cannot close audio amp!");
}

77

Tapwave Programmer’s Reference

3.6.4.2Properties
The Audio Amplifier properties, for device audioAmp0, can be accessed through the
TwDeviceGetProperty and TwDeviceSetProperty APIs, detailed above. There
are no read, write, or control commands associated with this device, only get and set
properties.

Property Description

TW_VD_AUDIOAMP_
ALL_PROPERTIES

GET only, returns a bitmap of the state of the audio amplifier as
follows:

TW_VD_AUDIOAMP_PROP_POWRD set if amplifier is on
TW_VD_AUDIOAMP_PROP_MUTED set if mute-all is on
TW_VD_AUDIOAMP_PROP_SPKR set if speaker mute is
on
TW_VD_AUDIOAMP_PROP_BASS_BOOST set if bass boost

is on

TW_VD_AUDIOAMP_
POWER_UP

Audio Amplifier Power. Set to non-zero to turn on the audio
amplifier system. Set to 0 to turn it off.

TW_VD_AUDIOAMP_
MUTE_ALL

Mute All. Set to non-zero to mute both speakers and
headphones. Set to 0 to unmute both.

TW_VD_AUDIOAMP_
MUTE_SPKRS

Speaker Mute. Set to non-zero to mute the speaker only. Set to
0 to unmute the speaker only. Note that there is no way to mute
the headphones.

TW_VD_AUDIOAMP_
BBOOST

Bass Boost. Set to non-zero to turn bass boost on. Set to 0 to
turn bass boost off.

3.7.Digital Rights Management API
DRM support is published in TwSecurity.h. Calling TwSecGetFunctions will
return a function table to the DRM functions detailed below. All the TwSecurity data
types, other than the function table, are opaque data structures.

Apps are signed at two levels: application signing and hardware locking, both of which
are done on a secure server using Tapwave private keys and RSA algorithms. The
public keys are stored in the ROM so applications and the OS can validate the
signatures.

78

Tapwave Programmer’s Reference

An application signature can be used to validate that the app has not been modified.
The hardware locking signature can be used to validate that the application has been
purchased for the device or card being used.

Verification is done by the OS when apps are launched and when certain Tapwave APIs
are used. For development purposes, the API checks can be turned off by getting a
Developer Access key from the Tapwave developer program. This key is in a database
file called TwDevAccess and is locked to each device (so you need a separate key for
each development device).

The following resources have defined uses in the DRM system (only TSIG.0 and TSIG.1
need to be created manually by the developer):

TSIG.0 – resource skip list. A list of the resources that are not included in the signing
process. The format of this resource is an array of { UInt32 type; UInt16 id; UInt16
reserved; }. Developers should generate this resource list and specify any resources
they plan to modify at runtime. Note that if the most significant bit (MSB) of a
resource type is set to 1, then it is automatically treated as if it is in the skip list.
(None of the typical 4-character resource types, e.g. ‘tFRM’, meet this criteria.)

TSIG.1 – require lock. 3 bytes which specify the hardware locking requirement for
the app. If this resource exists then hardware locking (both device and card) is
required for this app. Developers should generate this resource.

The require lock resource is of the form:
 Version 1 byte – set to 1 (0x01) for this structure
 Type 1 byte
 LockingRequired 1 byte

Where Type is interpreted as a bitfield as follows:
 0x00 none allowed.
 0x01 device signature required
 0x02 card signature required
 0x03 allow device or card locking
 0x04..0xFE reserved for future expansion
 0xFF allow any locking type

And LockingRequired is:
 0x00 locking is optional, use for “demo mode” apps
 0x01 locking is required
 0x02..0xFF reserved for future expansion

TSIG.2 – application signature. The RSA signature of the application’s PRC file. It
includes all resources not listed in TSIG.0 and not having the most significant bit of
their type set. The application signature is generated by the development server.

TSIG.3 – purchase info. A null terminated string of purchase information. The
purchase info is generated by the commerce server when an application is purchased.

79

Tapwave Programmer’s Reference

TSIG.4 – locking signature. A signature that locks the application to either a card or a
device serial number. The locking signature is generated by the commerce server
when an application is purchased.

TSIG.100 + x – code signatures. These signatures sign code.x ARM native code
resources for the Tapwave Native Application Model. Only TSIG.101 is currently used
to sign the sole Tapwave Native Application ARMC or ARMZ collective resource.

3.7.1.Validating the DRM system
Each app should validate it’s access to the DRM system using some or all of the
following methods. For additional information on validation, see the Digital Rights
Management document.

Validate the signature of DAL.prc. DAL.prc will be signed (just like application PRCs)
using the system signing key.

TwSecGetPublicKey (&key, twSecSystemKey);

• Check that the value of the DAL signing key is what it should be.

• Check that the checksum of the block of all keys is right.

• Check that the MMU setup has not been modified.

• Make sure the DRM functions point to the ROM.

• Check to make sure verification fails when it should. (This makes spoofing the
verification process harder.) Do this by verifying a series of memory blocks, some
of which should fail and some of which should succeed. It is computationally
infeasible to know which should fail and which should succeed, so by testing a
sequence of blocks you validate that DRM is functioning and hence that it’s
verifications of your app are likely to be working.

• Verify the signature you get for the DRM functions from TwSecGetFunctions.

• Make sure the DRM functions point into DRM code block.

TwSecGetFunctions

Purpose Return a pointer to the DRM functions.

Prototype const TwSecTableType *TwSecGetFunctions(Int32 version,
TwSecSignatureType *codeSignature, UInt8
**codeStart, UInt32 *codeSize);

80

http://www.tapwave.com/developers/members/DRM/DRM_TOC.html
http://www.tapwave.com/developers/members/DRM/DRM_TOC.html

Tapwave Programmer’s Reference

Parameter
s

version Version of DRM functions that you want. Should be 1
for the initial version of the DRM API.

 [out]
codeSignature

Signature returned for the code block. Indicated by
codeStart and codeSize. Can be null if no value
is needed.

 [out]
codeStart

The starting address of the signed code block that
contains the implementation of the DRM functions.
Can be NULL if not needed..

 [out]
codeSize

Location to store size of code that defines DRM
functions. Can be null if not needed.

Result Returns a table of function pointers.

Comments The returned table of function pointers. The pointers should all point to
the code area indicated by codeStart and codeSize, which itself can be
verified using the signature returned and the TAL signing key.

Header TwSecurity.h

Sample See DRM application in code samples.

81

Tapwave Programmer’s Reference

TwSecGetPublicKey

Purpose Return public keys from the device ROM.

Prototype Err TwSecGetPublickey(TwSecPublicKeyType *publicKey,
Int32 keyNumber);

Parameter
s

[out]
publicKey

Location to store the retrieved public key.

 keyNumber Which key to retrieve. Can be any value in
[twSecFixedKeyBase, twSecFixedKeyBase -
twSecNumFixedKeys – 1].

Result Error code on failure:

sysErrNotAllowed – if keys have been modified.

Comments Using the constant, twSecSystemKey, will return the System Signing
Key which can also be retrieved directly from the EEPROM.

Header TwSecurity.h

Constants twSecSystemKey

Sample See DRM application in code samples.

TwSecGetHardwareId

Purpose Return the hardware id of a specific hardware item.

Prototype Err TwSecGetHardwareId(TwSecHardwareIdType *hardwareId,
UInt8 hardwareInfoType, Int16 slotNum);

82

Tapwave Programmer’s Reference

Parameter
s

[out]
hardwareId

Location to store hardware id.

 HardwareInf
oType

Which type of hardware id to get. See constants
below.

 SlotNum If getting card id, which slot to get info for.

Result Returns a non-zero error code on failure.
sysErrParamErr or Expansion manager errors.

Comments The constants that are accepted for hardwareInfoType are

twSecDevice

and

twSecCard

Header TwSecurity.h

Constants See above

Sample See DRM application in code samples.

TwSecVerifyDatabase

Purpose Do a full verification on a database. Both application signing and
hardware locking are checked. Databases without signatures are defined
to be invalid.

Prototype ARM:
Boolean TwSecVerifyDatabase(MemHandle dbH, UInt32

*failureReason, UInt32 failureAction);
68k:
Boolean TwSecVerifyDatabase(UInt16 cardNo, LocalID

dbId, UInt32 *failureReason, UInt32
failureAction);

83

Tapwave Programmer’s Reference

Parameter
s

ARM:
dbH

68k:
cardNo
dbId

Identification of which database to check:

ARM:

Handle to the database.

68k:

Card number and LocalID of database.

 [in/out]
failureReason

Error code indicating reason for failure. On success,
the passed in value is rotated by 19 bits (see
comments).

 failureAction Indicates what actions the function should take on
failure. The choices are return error code or reset
(see constants below).

Result Returns true if database is valid.

Comments Upon successful verification, the failureReason value is rotated by 19
bits so that it is hard to trick the application into calling a fake entry
point in ROM that just returns true (fake entry points are unlikely to also
rotate the value in failureReason by 19 bits!).

If the database is open for write access, verify will fail because read
access is needed to verify.

Header TwSecurity.h

Constants Failure reasons will be one of the following
twResetReasonInvalidAppSig
twResetReasonInvalidHwrSig
The failureAction codes are
twSecReturnOnFail
twSecResetOnFail

TwSecVerifyCurrentApp

84

Tapwave Programmer’s Reference

Purpose Do the most complete job possible, from the current execution point, to
verify that the app running is authorized to run.

Prototype Boolean TwSecVerifyCurrentApp(UInt32 *failureReason,
UInt32 failureAction);

Parameter
s

[in/out]
failureReason

Error code indicating reason for failure. On success,
the passed in value is rotated by 19 bits (see
comments).

 failureAction Indicates what actions the function should take on
failure. The choices are return error code or reset
(see constants below).

Result True if verification succeeded.

Comments Upon successful verification the failureReason value is rotated by 19
bits so that it is hard to trick the application into calling a fake entry
point in ROM that just returns true (fake entry points are unlikely to also
rotate the value in failureReason by 19 bits!).

Header TwSecurity.h

Constants The failureAction codes are
twSecReturnOnFail
twSecResetOnFail

Sample See DRM application in code samples.

TwSecFailureReset

Purpose Reset the device in such a way that the reason for the reset displays after
the reset.

Prototype void TwSecFailureReset(const char *filename, UInt32
reason, const char *message);

85

Tapwave Programmer’s Reference

Parameter
s

[in]
filename

Name of file where error occurred.

 reason One of the constants below.

 [in]
message

Message to display.

Result nothing

Header TwSecurity.h

Constants Reason code can be one of the following:
 twResetReasonInvalidAppSig

 twResetReasonInvalidHwrSig

 twResetReasonInvalidCodeSig

 twResetReasonInvalidDevSig

TwSecVerifyMemory

Purpose Verify a block of memory.

Prototype Boolean TwSecVerifyMemory(const UInt8 *mem, UInt32
memSize, const TwSecPublicKeyType *key, const
TwSecSignatureType *sig, UInt32 *failureReason,
UInt32 failureAction);

Parameter
s

[in] mem Starting address of memory block to verify.

 memSize Number of bytes to verify.

 [in] key Public key to use in verify.

86

Tapwave Programmer’s Reference

 [in] sig Signature of memory block.

 [in/out]
failureReason

Error code indicating reason for failure. On success,
the passed in value is rotated by 19 bits (see
comments).

 failureAction Actions the function should take on failure. The
choices are return error code or reset (see constants
below).

Result Returns true if verified.

Header TwSecurity.h

Constants The failureAction codes are
twSecReturnOnFail
twSecResetOnFail

Sample See DRM application in code samples.

TwSecVerifyPointerOwnership

Purpose Verify that the database has a valid signature and that the pointer points
to data that belongs to the database.

Prototype ARM:
Boolean TwSecVerifyPointerOwnership(UInt16 cardNo,

LocalID dbID, const TwSecPublicKeyType *key, const
void *ptr, UInt32 *failureReasonP, UInt32
failureAction);

68K:
Boolean TwSecVerifyPointerOwnership(MemHandle dbH,

const TwSecPublicKeyType *key, const void *ptr,
UInt32 *failureReasonP, UInt32 failureAction)

Parameter
s

ARM:
dbH

68k:
cardNo

Identification of which database to check:

ARM: Handle to the database.

87

Tapwave Programmer’s Reference

dbID 68k: Card number and LocalID of database.

 [in] key Public key to use in verify. You can pass NULL to
use the default system key for the application.

 [in] ptr Pointer to verify.

 [in/out]
failureReason

Error code indicating reason for failure. On success,
the passed in value is rotated by 19 bits (see
comments).

 failureAction Actions the function should take on failure. The
choices are return error code or reset (see constants
below).

Result Returns true if verified, returns false and error code or resets if
verification fails.

Header TwSecurity.h

Constants The failureAction codes are
twSecReturnOnFail
twSecResetOnFail

Sample See DRM application in code samples.

3.8.Desktop APIs
In order to provide support for installing data files, Tapwave has defined a new Install
Aide function. This function is defined in InstAide.dll.

PlmSlotInstallFileToDir

Purpose Install a file to a specific directory.

88

Tapwave Programmer’s Reference

Prototype int WINAPI PlmSlotInstallFileToDir (DWORD dwUserId,
DWORD dwSlotId, const TCHAR *pszFilePath, const
TCHAR *pszDir, DWORD dwCondId);

Parameter
s

[in]
dwUserId

The user’s Palm ID as returned by
PlmGetUserIDFromName.

 [in]
dwSlotId

The ID number of the slot to install into. The slot can
be retrieved using UmSlotGetInfo. You’ll usually
use slot 0 which is the internal VFS volume.

 [in]
*pszFilePath

The source file to install. This must include the full
path.

 [in] *pszDir The destination directory on the card, starting at the
root level. (e.g: “PALM\Programs\<gamename>-
<gamecreatorid>”. This should not start or end with a
backslash character.

 [in]
dwCondId

The creator ID of the Tapwave card installer. Use
‘TWci’.

Result ERROR_SUCCESS – Successful installation.

ERR_PILOT_INVALID_FILENAME - if pszFilePath is NULL

ERR_PILOT_INVALID_FILE_TYPE or ERR_PILOT_INVALID_PATH - if
there was a problem retrieving the Install path.

ERR_PILOT_FILE_ALREADY_EXISTS - if file already exists in the user's
slot install directory.

ERR_PILOT_INVALID_SOURCE_FILE - if the source file could not be
located.

ERR_PILOT_COPY_FAILED - if an error occured during the actual copy
operation.

89

Tapwave Programmer’s Reference

Comments This function sets the appropriate registry flags to schedule the conduit,
creates the install directories under the user folder on the desktop, and
copies the file to the correct location to await installation by the new
Tapwave install conduit.

90

	Copyright
	Overview
	Specifications
	Description
	Large Screen and Landscape Support
	Advanced Input Support
	2D Graphics Support
	X-Forge Core 2D
	Tapwave TwGfx Graphics API

	3D Graphics Support
	Bluetooth Collaborative Networking Support
	Palm OS Bluetooth API
	X-Forge Core Network API
	X-Forge Game Engine Network API

	Advanced Sound Support
	Gaming Support
	High Score
	Other Useful Functions

	Vibration Support
	Digital Rights Management Support

	API Specifications
	Tapwave Features
	Tapwave Virtual Characters
	Tapwave Error Codes
	Tapwave Screen APIs
	Getting Hardware Characteristics
	PINS version
	Pen Input Area Capabilities

	Screen Orientation
	Pen Input Area
	Status Bar
	Handedness Preference

	Tapwave Input API
	Input Event Constants

	Gaming API
	High Score
	Registering a game with the high score server
	Reporting a high score
	Reading high scores
	Tournament Scores

	Other Useful Functions
	Creating Attractive Graphic Controls
	Getting Correct Bitmap Dimensions

	Determining the location of VFS Volumes
	Installing Databases from Compressed Images
	Showing Images for Hardware Buttons

	Device APIs
	Attention Manager Extensions
	New AttnFlagsTypes

	General Virtual Device Interface
	Rumbler Virtual Device
	Sample usage:
	Properties:

	Audio Amplifier Virtual Device
	Sample Usage
	Properties

	Digital Rights Management API
	Validating the DRM system

	Desktop APIs

