Tapwave Native Application

Tapwave, Inc. Proprietary

Tapwave®
Tapwave Native Application

	Current Version
	Date
	Author

	Rev 0.4
	08/21/2003
	RR

Revision History

	Version
	Date
	Description
	Author

	Rev 0.1
	08/18/2003
	Initial checkin
	RR

	rev 0.2
	08/19/2003
	Add API Reference
	HZ

	rev 0.3
	08/20/2003
	Reviewed
	RF

	rev 0.4
	08/21/2003
	Wordsmithing
	RR

© Copyright 2003 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. in the United States and/or other countries. Palm OS, the Palm logo, Graffiti, HotSync, and PalmSource are registered trademarks of Palm, Inc. Palm, Palm Powered, and the Palm Powered logo are trademarks of Palm, Inc. X-Forge is a trademark of Fathammer, Ltd. Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

31.
Overview

32.
Tapwave Native Application Framework

63.
Tapwave Native Application Runtime

94.
Tapwave Native Application APIs

105.
Creating a Tapwave Native Application for the Tapwave Device

116.
Creating a Tapwave Native Application for the Palm OS Simulator

127.
Testing on the Tapwave device

128.
Testing on the Palm OS Simulator

169.
Navigating on the Palm OS Simulator

1710.
Managing Game Data

1811.
Installing Your Game onto a Device

This guide is intended to provide an overview, as well as reference information, for creating Tapwave Native Applications. This document is geared towards developers who don’t need the standard Palm OS UI widgets and are creating full-screen games for the Tapwave platform.
A Tapwave Native Application is designed and optimized for high-performance game play.

1. Overview
Tapwave provides the Tapwave Native Application (TNA) framework for creating native-ARM applications for Tapwave devices.
A Tapwave Native Application consists of two parts: 1) A very small 68k stub that launches the ARM native code on the device, and 2) the main application logic compiled into native ARM code. TNA apps can’t use any standard Palm OS UI widgets from ARM code and you can only directly call those Palm OS functions defined <TwGlue.h>.
The Tapwave Native Application framework provides the following:

a) The fastest possible code execution.
b) Source level debugging via the Palm OS Debugger.
c) Extensive runtime and library support, including true global variables, runtime relocation, standard C/C++ library, floating point, math library, socket, zlib.
These capabilities enable the development of high-performance interactive gaming applications. Applications developed using the TNA model will have binary compatibility with future Tapwave devices.

2. Tapwave Native Application Framework
The
Tapwave Native Application framework provides the easiest way to create a high-performance game on the Tapwave platform. By using this framework, an application can register to receive system events and respond appropriately by processing input and drawing to the screen. The framework consists of the following APIs:
TwAppStart

	Purpose
	Initialize the Tapwave Native Application framework

	Prototype
	Err TwAppStart (Boolean (*handler)(EventType* event));

	Parameters
	[in] handler
	The application event handler

	Result
	errNone

	Pre-Conditions
	An application should not call any Palm OS user interface APIs before calling this function.

	Post-Conditions
	

	Side Effects
	

	Comments
	This function creates a blank window, installs the event handler for the window, and makes the window the active window. The application can access the window by using WinGetActiveWindow() inside the event handler. Once the framework is started, the event handler must be ready to receive events from the system. If an application has specific needs for display layout, it should perform the appropriate setup in advance.

	Header
	TwRuntime.h (included by Tapwave.h)

	Constants
	

	Sample
	// using full screen landscape mode

Int32 timeout = 0;

SysSetOrientation(sysOrientationLandscape);

PINSetInputAreaState(pinInputAreaHide);

StatHide();
TwAppStart(&AppHandleEvent);

TwAppRun(&timeout);

TwAppStop();

TwAppStop

	Purpose
	Finalize Tapwave Native Application framework

	Prototype
	Err TwAppStop (void);

	Parameters
	
	

	Result
	errNone

	Pre-Conditions
	

	Post-Conditions
	An application should not call any Palm OS user interface APIs after calling this function.

	Side Effects
	

	Comments
	

	Header
	TwApp.h (included by Tapwave.h)

	Constants
	

	Sample
	Int32 timeout = 0;

TwAppStart(&AppHandleEvent);

TwAppRun(&timeout);

TwAppStop();

TwAppRun

	Purpose
	Run Tapwave Native Application framework

	Prototype
	Err TwAppRun (Int32 * timeout);

	Parameters
	[in] timeout
	The pointer to a 32-bit integer that controls the event loop speed. The timeout is in milliseconds.

	Result
	ErrNone

	Pre-Conditions
	An application should only call this API after TwAppStart and before TwAppStop.

	Post-Conditions
	

	Side Effects
	

	Comments
	This function runs the standard Palm OS event loop. In general, it is more efficient to use this convenient API than writing custom event loop inside your application.

This function returns upon the first unhandled appStopEvent.

WARNING: Although the timeout value is specified in milliseconds, the actual accuracy may be as low as 10ms because of various hardware/software limitations. The same rule also applies to SysTaskDelay.

	Header
	TwApp.h (included by Tapwave.h)

	Constants
	

	Sample
	Int32 timeout = 0;

TwAppStart(&AppHandleEvent);

TwAppRun(&timeout);

TwAppStop();

The following illustrates a typical Tapwave Native Application event handler.

ARMLET_CALLBACK Boolean

AppHandleEvent(EventType * event)

{

 switch (event->eType)

 {

 case winDisplayChangedEvent:

 {

 RectangleType bounds;

 // NOTE: update window bounds to match the new display bounds.

 WinGetBounds(WinGetDisplayWindow(), &bounds);

 WinSetBounds(WinGetActiveWindow(), &bounds);

 // TODO: update rest of application logic

 return true;

 }

 case winExitEvent:

 // NOTE: application should pause on this event,

 // such as stop background sound. Control of the device

 // is about to switch to other code, and no events

 // will be received until the control is resumed.
 // WARNING: app has to return false here in order to give

 // system a chance to fixup PINS state, or the app can

 // fix the PINS state by itself.

 return false;

 case winEnterEvent:

 // NOTE: application should resume on this event,

 // such as resume background sound.
 // WARNING: app has to return false here in order to give

 // system a chance to fixup PINS state, or the app can
 // fix the PINS state by itself.
 return false;

 case nilEvent:

 // NOTE: games should perform rendering on this event.

 // For timing sensitive games, they should double check

 // the wall clock time using TimGetTicks().

 return true;

 case frmUpdateEvent:

 // NOTE: system sends this event to force application

 // redraw itself. Applications should try their best.
 // Only a partial screen redraw maybe needed. In either

 // case the clipping bounds are set appropriately.
 return ture;

 case appStopEvent:

 // NOTE: save application state and get ready for quit.

 // If application refuses to quit, it should return true.

 return false;

 case keyDownEvent:

 // NOTE: this is general key down event. Applications should

 // only return true if they handle the specific key in the event.
 return false;

 case keyUpEvent:

 // NOTE: this is general key up event. Applications should

 // only return true if they handle the specific key in the event.

 return false;

 case penDownEvent:

 // NOTE: application will see this event only if the pen is

 // down inside application window, otherwise this pen will

 // be handled by the operating system.

 return false;

 case penMoveEvent:

 // NOTE: application can use EvtGetPen() to poll pen position

 // up until the pen is up instead of waiting for penMoveEvent.

 return false;

 case penUpEvent:

 // NOTE: application will see this event only if it receives

 // matching penDownEvent first. However, application should

 // try to guard against spurious wrong event dispatching.

 return false;

 default:

 // NOTE: TNA applications normally ignore other event types.

 return false;

 }

}
3. Tapwave Native Application Runtime
The

Tapwave Native Application runtime provides simple and convenient APIs for managing Tapwave Native Application modules (or PACE Native Object modules). You should use the runtime API from your 68k code to load your ARM code. The runtime consists of the following APIs:

TwLoadModule

	Purpose
	Load a PACE Native Object module

	Prototype
	Err TwLoadModule (UInt32 dbType, UInt32 dbCreator, UInt32 rsrcType, UInt32 rsrcID, UInt32 flags, NativeFuncType** entry);

	Parameters
	[in] dbType
	Database type

	
	[in] dbCreator
	Database creator

	
	[in] rsrcType
	Resource type

	
	[in] rsrcID
	Resource id, which must be <= 0xFFFF

	
	[in] flags
	Various flags that control the module loading.
twLoadFlagTNA load and initialize an TNA module

twLoadFlagQuickRun load a Pace Native Object module, run it, and unload it

	
	[out] entry
	Returns the entry point to the loaded PACE Native Object

	Result
	errNone

sysErrParamErr

memErrNotEnoughSpace

memErrChunkNotLocked

sysErrLibNotFound

	Pre-Conditions
	

	Post-Conditions
	

	Side Effects
	

	Comments
	If both the dbType and dbCreator are zero, this function will load the module by using SysCurAppDatabase.

If rsrcType is zero, it is assumed to be 'ARMC' on ARM devices, and 'SIMC' on Palm OS Simulator. If the 'ARMC' code resource is missing, the runtime will try to load the 'ARMZ' code resource, which is assumed to be the gzipped version of 'ARMC' resource. You can gzipped your ‘ARMC’ resource and save about 50% of storage space.
The code in the resource is copied/expanded to the dynamic heap and relocation is performed. Larger code resources leave less memory available for the application’s use.

.
The runtime uses reference counting to manage loaded libraries. Multiple loads of the same library will use the same entry point. The global state of a library is kept intact between multiple PceNativeCall() calls.

If the debugger is present, this function also automatically notifies the debugger about the newly loaded module.

	Header
	TwRuntime.h (included by Tapwave.h)

	Constants
	

	Sample
	NativeFuncType* entry;
TwLoadModule(0, 0, 0, 1, twLoadFlagTNA|twLoadFlagQuickRun, &entry);

TwUnloadModule

	Purpose
	Unload a PACE Native Object module

	Prototype
	Err TwUnloadModule (NativeFuncType* entry);

	Parameters
	[in] entry
	PACE Native Object entry point, which must be previously returned by TwLoadModule.

	Result
	errNone

sysErrLibNotFound

	Pre-Conditions
	

	Post-Conditions
	

	Side Effects
	

	Comments
	The runtime uses reference counting to manage loaded modules. Applications should maintain balanced load and unload calls.
If the debugger is present, this function also notifies the debugger regarding the unloaded module.

	Header
	TwRuntime.h (included by Tapwave.h)

	Constants
	

	Sample
	NativeFuncType* entry;
TwLoadModule(0, 0, 0, 1, 0, &entry);

PceNativeCall(entry, NULL);

TwUnloadModule(entry);

TwFindModule

	Purpose
	Find PACE Native Object module for a given PC.

	Prototype
	Err TwFindModule (void* pc, TwModuleInfo* info, UInt32 size);

	Parameters
	[in] pc
	Program counter to query.

	
	[out] info
	Returns module info if any.

	
	[in] size
	The sizeof(TwModuleInfo).

	Result
	errNone

sysErrLibNotFound

	Pre-Conditions
	

	Post-Conditions
	

	Side Effects
	

	Comments
	This function will only find a module loaded by using TwLoadModule.
Applications should only use this API for debugging and profiling purpose. It should never call a module found using this API. If you need to use PceNativeCall, then you must load the module using TwLoadModule first.
If the size is smaller than sizeof(TwModuleInfo), only partial data is returned.

If the size is larger than sizeof(TwModuleInfo), the extra space is filled with zeros.

	Header
	TwRuntime.h (included by Tapwave.h)

	Constants
	

	Sample
	

4.

	
	

	
	

	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

5. Tapwave Native Application APIs
Tapwave Native Applications have access to a subset of PalmOS 5.x APIs and most of the Tapwave APIs. These APIs are 32-bit native APIs, not PACE wrapper functions. They are all defined in the TwGlue.h header file.

In order to access these APIs, the header file must be compiled with __PALMOS_ARMlet__ macro defined. The Metrowerks CodeWarrior 9.2 compiler does this automatically.
6. Creating a Tapwave Native Application for the Tapwave Device
To create a Tapwave Native Application, you’ll need CodeWarrior 9.2 and the Tapwave SDK. If you don’t already have either, visit the Tapwave Developer Zone for more information (http://www.tapwave.com/developers/).

The GameStarter sample code is a great place to start. This sample includes the following files:

Application.c
The 68k source file.

GameStarter.rcp
The application’s resources. This example only includes the application’s icons and a “ROM Incompatible” alert.

Application.rcp
This resource maps the entry point into the x86 code resource. This is only necessary for running/debugging your application on the Palm Simulator. The name of your DLL (minus the “.dll” extension) is included in this file. You’ll need to change this name if you change the name of your DLL.

GameStarter.c
The source file for the Native ARM code.

ARMlet.cpp
This file defines the real entry point into the ARM code. From here, you can fine tune various hooks as well as relocation support, floating point.

In order to compile the code properly, the access path for 68k code should consist of “{Compiler}Palm OS Support”, and “{Tapwave SDK}Incs\Tapwave”. The access path for ARM code should consist of “{Compiler}ARM_EABI_Support”, and “{Tapwave SDK}Incs”.
The ARM code must link to ARMlet.cpp (for startup code), Runtime_PNO.a (for compiler instrinsics), MSL_C_PNO.a (for standard C library), and MSL_C++_PNO.a (for standard C++ library).
Application.c contains a small 68k stub whose only job is to launch the ARM code on the device or x86 code on the Palm Simulator. Below is a snippet showing how to launch the ARM code resource:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)

{

 UInt32 res = errNone;

 NativeFuncType* entry;

 if (cmd == sysAppLaunchCmdNormalLaunch) {

 if (!RomVersionCompatible(launchFlags)) {

 res = TwLoadModule(0, 0, 0, 1,
 twLoadFlagTNA|twLoadFlagQuickRun, &entry);

 }

 }

 return res;

}

GameStarter.c contains the main application event loop and the game engine. This example shows only the core code necessary to run properly:

ARMLET_CALLBACK Boolean GameHandleEvent(EventType* eventP)

{

Boolean

handled = false;

RectangleType
bounds;

switch (eventP->eType)

{

case winDisplayChangedEvent:

WinGetBounds(WinGetDisplayWindow(), &bounds);

WinSetBounds(WinGetActiveWindow(), &bounds);

handled = true;

break;

case nilEvent:

case frmUpdateEvent:

// Put update code here

handled = true;

break;

}

return (handled);

}

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)

{

Int32
timeOut = TimeUntillNextPeriod();

if (cmd == sysAppLaunchCmdNormalLaunch)

{

// Get the screen to a state we want.

SysSetOrientation(sysOrientationLandscape);

PINSetInputAreaState(pinInputAreaHide);

StatHide();

// Set everything up.

TwAppStart(&GameHandleEvent);

// Run event loop.

TwAppRun(&timeOut);

// Tear everything down.

TwAppStop();

}

return 0;

}

7. Creating a Tapwave Native Application for the Palm OS Simulator
To create a Tapwave Native Application for Palm OS Simulator (Simlet), you’ll need Visual C++ 6.0 with SP5 and the Tapwave SDK. A Simlet consists of two parts:
a) The Tapwave Native Application for device
b) A Windows DLL that contains the compiled x86 code.
The advantage of creating a Simlet is that you can debug your code quickly using the Palm OS Simulator, rather than the slower method of debugging directly on the device. Note that you should still test your application thoroughly and frequently on the device because there are many differences between the Simlet and device runtime environments.

The GameStarter sample code includes the following files necessary to build the DLL:

GameStarter.dsw
Visual Studio workspace file.

GameStarter.dsp
Visual Studio project file.

8. Testing on the Tapwave device

Testing on the device is straightforward. Build the project in CodeWarrior 9.2 and transfer it to the device.

The easiest ways to transfer it to the device is to copy it to the /PALM/Launcher/ folder of an SD card. Once you insert the card in the device, your application will show up. Just tap on it to run.

You can source level debug your code on the device using the Palm Universal OS Debugger.

9. Testing on the Palm OS Simulator

Testing on the Simulator is a bit more complicated, but allows you to source-level debug your code from Visual C++.

First, it’s helpful to understand the debugging cycle on the Simulator. Debugging on the Simulator involves 4 components: the Palm OS Simulator, Visual C++, your application’s PRC, and the Simlet DLL.

Traditionally you need place your DLL into the Simulator folder and then load your PRC into a running instance of the Simulator. The PRC is necessary because it contains the 68k code that launches the x86 code in the DLL. The DLL is necessary because it contains the native x86 code that is executed when you launch your application. Note that you only need to re-compile your PRC under two conditions: when you change the 68k code or when you make changes to your resources. In most cases, your PRC will not change so you won’t need to use CodeWarrior very often to build a Simlet since most of your code changes will be to the DLL code rather than the 68k code or the ARM code.

You can automate much of this file/prc copying by making use of some neat tricks with CodeWarrior, the Palm OS Simulator, and Visual C++.

Inside the Simulator folder should be a folder called “AutoLoad”, if it doesn’t exist then create it. The contents of this folder are loaded into the Simulator each time the Simulator is launched or reset. You should place your PRC into this folder.

You can change the output directory in CodeWarrior so that your application is always placed in that folder when you build. Open your project settings and change the “Output Directory” under “Target Settings” to the “AutoLoad” folder. Be sure that you modify the 68k target and NOT the ARMlet target.
[image: image1.jpg]m Application Settings

Toigel Selings Panels

Torgel Selings

Torget

- Target Settings

- Access Paths
Buid Extas
Funtime Seffings
File Mappings
Source Trees
Paim 0 68K Target
PR Fie Setings

LongusgeSeting:

- C/Ces Language

- C/Ce+ Warnings
PIRC Seltings

Code Generatian

- 68K Processar

- 68K Disassembler
Giobal Optinizations

Linker

TagetNane: [rppoain
I - —
I —
L

Output Directory:

{Project).\. SPalmSimAutoL oad

Ohoose
Cear

I~ Save profect enties using relative paths

Factory Settings

| e || e

o =

You can also change the DLL Output directory in Visual C++ to be the Simulator folder. Go to “Project Settings”, select “Link”, select the “General” category, and change the “Output file name” field to include the path of the Simulator folder.

[image: image4.jpg]Project Settings.

Settings For: [v/in22 Debug

Gereral | Debug | €/ Link | Resoue! (]3]

Cotegory [General ~ Reset
Oulput e pame:

F{Other SDKsRTapwave A7 SDK\PalmSim\GameStarter

Object/ibrary modies:
omel32 b user32 b gd32 b winspool b comdig32 b ad

¥ Generate debuginfa [Ignore all defaitipraries
¥ Likincrementaly [~ Generale mapfle
1™ Enable pofiing I Dossritprosce LIB

Frsiect Dptons:

omel32 b user32 b gd32 b winspool b comdg32 A
b advapia2 b shell2 b ole32 b oleaut32 b wid ib —
lodbe321b odbeop32 b /nclogo /di Ancrementalyes

Cance

Next, we need to update a few settings in Visual C++ to enable debugging. You’ll need to select the executable for debugging and set your working directory. Select “Settings” from the “Project” menu, then click on the “Debug” tab and select the “General” category. Set the “Executable for debug session” field to the path of the Simulator executable, and set your working directory to the path of the Simulator folder.

[image: image6.jpg]Project Settings.

Settings For: [y/in22 Debug

Genetal Debug | C/C+s | Link | Resoue! (]3]

Cotegory: [General =
Evecutablefor debug sessior:

[Oter SOKs)\Tapwave 7 SOK\PainGimPainsimere » |
Warking diectoy
[im 05 Support\Dther SOKSTapwave F7 SOKPalnSinh.

Frogram siguments:

P

Remole executable path and e pame:

e

Finally, ensure that your project is set to load symbols for your DLL. By default, the VC++ debugger only loads symbols for the Simulator. By adding your DLL, you will be able to debug your code. To do this, select “Settings” from the “Project” menu. Then click on the “Debug” tab and select “Additional DLLs” from the “Category” picker.

[image: image8.jpg]Project Settings.

SetingsFor. [Wird2ebg v] | Gened Debug | C/Ces | ik | Resouet
= Category: |Additional DLLs 3

Place a check in the fst column to load the module's
symbls at the stat of @ debug session.

¥ Tiytalacate other DLLs

Cance

You’re now ready to debug!

Build your PRC in Codewarrior, then switch to Visual C++ and start debugging from the “Build” menu (F5). This will build your project and launch the simulator for you. Select your application from the launcher and you should be up and running!

Tip: Set the PALM_SIM_VERY_QUIET environment variable to 1 (“SET PALM_SIM_VERY_QUIET=1”). This environment variable will increase the Simulator debugging speed by about 10 times, but it also turns off memory error checking. Use this with caution.

10. Navigating on the Palm OS Simulator

You’ll want to attach a game controller to your PC so that you can navigate through the Simulator.
We recommend using the Microsoft Sidewinder Game Pad Pro (http://www.activewin.com/reviews/hardware/joysticks/microsoft/game_pad_pro/index.shtml). It has buttons for the joystick, action keys, trigger keys, function, and home buttons. Most USB analog game pads should work though.
You can test the game controller’s performance/configuration by launching the “Navigation” application. This application will show the joystick location as well as the state of all other keys.
If you have problems getting the joystick working, or prefer using the keyboard, the following mappings will work on the Simulator:
	Key Combination
	Action on the Simulator

	Alt-A
	Action A

	Alt-B
	Action B

	Alt-C
	Action C

	Alt-D
	Action D

	Alt-L
	Left Trigger

	Alt-R
	Right Trigger

	Alt-F
	Function Button

	Alt-H
	Home Button

Note that the Simulator supports multiple key presses and key-up.
11. Managing Game Data

There are two different models you can use to manage your game’s data files.

The first model is to embed all of your sounds, data, bitmaps, etc, directly in your application’s PRC file. The advantage of this model is that it keeps the download and installation of your application simple. We suggest developers use this model if their application is relatively small (ie: less than 300k).

The other model is to only include your application’s code in the PRC, and separate your sounds, data, bitmaps, etc, into separate files. We suggest developers use this model if they have a large amount of game data – this ensures the most efficient use of system memory.
If your game uses separate data files, an installer should be created to ensure files are installed in the correct location – see below for more information on installing files.
Use the following guidelines for managing your game’s data files:
 All game data should be stored on a VSF volume (either on an external memory card or on the internal card) using the following path: "/PALM/programs/<prcdatabasename>-<creatorid>/", where <prcdatabasename> is the Data Manager's database name of the main application PRC file; (the appl file).

For instance, if your application’s database name is “Application” and the creator id is "Strt"”, then the path would be “/PALM/Programs/Application-Strt/”. The following functions are defined to help facilitate path creation: TwGetDBDataDirectory and TwGetPRCDataDirectory.

You can override the default path name by adding a ‘Twdp’ resource with ID #0 to your main application file. This resource should specify the path to use in place of “/PALM/programs/<prcdatabasename>-<creatorid>/”. You should only override this if you need to share data between applications.

Following this convention reduces clutter and allows the Tapwave launcher to copy game data correctly between the internal memory and an external memory card. The game data follows the game PRC if the PRC is moved from internal memory to external memory and visa versa. Note that all data in the application’s directory is deleted when the application is deleted through the Tapwave launcher. This could have repercussions if you share data amongst applications.

Game preferences and saved game state should still be stored using the Palm OS Preferences or Data Manager APIs, the above information only applies to read-only game data such as graphics and sound files.

12. Installing Your Game onto a Device

We strongly recommended that you create an installer if your game uses data files. Your installer will need to employ a two-part installation.
The first part installs your PRC file using the appropriate Install Aide API (e.g: PltInstallFile). The second part installs your games data files using the new PlmSlotInstallFileToDir API, which is included in the Tapwave desktop (add information on header file once it’s in the sdk).
PlmSlotInstallFileToDir

	Purpose
	Installs a file to a specific directory.

	Prototype
	int WINAPI PlmSlotInstallFileToDir (DWORD dwUserId, DWORD dwSlotId, const TCHAR *pszFilePath, const TCHAR *pszDir, DWORD dwCondId);

	Parameters
	[in] dwUserId
	The user’s Palm ID as returned by PlmGetUserIDFromName.

	
	[in] dwSlotId
	The ID number of the slot to use. The slot can be retrieved using UmSlotGetInfo.

	
	[in] *pszFilePath
	The source file to install.

	
	[in] *pszDir
	The destination directory on the card, starting at the root level. (e.g: “PALM\Programs\<gamename>-<gamecreatorid>”.

	
	[in] dwCondId
	The creator ID of the Tapwave card installer. Use ‘TWci’.

	Result
	?????

	Pre-Conditions
	

	Post-Conditions
	

	Side Effects
	

	Comments
	This function will set the appropriate registry flags to schedule the conduit, create the install directories under the user folder on the desktop, and copy the file to the correct location to await installation by the new Tapwave install conduit.

There are a number of ways to acquire and specify the user and slot information using the Install Aide APIs. Here is one example:

// Your installer will need to prompt for the user name
// from a list of all possible users on a PC.
strcpy (userName, "Joe Smith");

retval = PlmGetUserIDFromName(userName, &dwUserId);

// Select the slot to install into

retval = UmSlotGetInfo(dwUserId, dwSlotIdList, &dwNumEntries);

// Select the slot to install into

i = 1;

// pick a slot somehow...

// Select the file from your installation files

strcpy(fileName, "c:\\<path to file>\\AcidSolitaire.prc");

// Select destination directory (under /PALM/Programs)

strcpy(destDir, "PALM\\Programs\\<gamename>-<creatorid>");

// Schedule install

retval = PlmSlotInstallFileToDir(dwUserId, dwSlotIdList[i], fileName, destDir, 'TWci');
20

