Tapwave, Inc. Proprietary

Tapwave®
Tapwave Advanced Sound API Reference

	Current Version
	Date
	Author

	Rev 0.
	07/24/2003
	MS

	
	
	

Revision History

	Version
	Date
	Description
	Author

	rev 0.
	
	
	

	rev 0.
	
	
	

	rev 0.
	7/24/2003
	light copy edit
	MS

© Copyright 2003 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. Palm OS, the Palm logo, Graffiti, HotSync, and PalmSource are registered trademarks of Palm, Inc. Palm, Palm Powered, and the Palm Powered logo are trademarks of Palm, Inc. X-Forge is a trademark of Fathammer, Ltd. Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

Application Sound Level

Applications are encouraged to share a common primary volume setting across the device. (If you turn the volume up in one app, and then change apps, it should still be louder.)

For compatibility, applications can read (and set) the Game Sound Level in the system preferences. This can be obtained by calling the Palm OS API PrefGetPreference. For details, see "Section 43: Preferences" in the Palm OS Programmer’s API Reference at http://www.palmos.com/dev/support/docs/palmos/Preferences.html. Note that the currently defined sound volume range is 0-64.

However, it is much simpler to use the provided routines for getting and setting the primary volume, and these values are also updated by various volume controls on the device.

Muting is done outside of the main volume control, so that when you unmute the volume returns to the original setting. Tapwave devices will have additional user interface around muting and unmuting, and applications should not need to code the mute state themselves.

TwSndGetVolume

	Purpose
	Gets the current application volume.

	Prototype
	UInt16 TwSndGetVolume(void)

	Result
	Number between 0 and sndMaxAmp (64) indicating the current sound volume.

	Comments
	This value is also reflected in the PalmOS sound manager application volume setting. Using this API, the preference value and sound manager value are kept in sync.

	Header
	TwSound.h

	Sample
	TBD

TwSndSetVolume

	Purpose
	Sets the application volume.

	Prototype
	Err TwSndSetVolume(UInt16 newVolume)

	Parameters
	newVolume
	A number between 0 and sndMaxAmp (64) for the new volume. 0 is effectively muted.

	Result
	sysErrParamErr if the newVolume is out of range.

	Comments
	This value is written to the game sound preference and sets the PalmOS sound manager application global volume setting. The system sounds (clicks, beeps, etc) are further set as a fraction of this level: turning down the application volume also turns down the beeps and clicks.

	Header
	TwSound.h

	Sample
	TBD

TwSndGetBassBoost

	Purpose
	Gets the current bass boost level.

	Prototype
	UInt16 TwSndGetBassBoost(void)

	Result
	Number between 0 and sndMaxAmp (64) indicating the current bass boost level.

	Comments
	This call returns the current bass boost setting. Bass boost applies to all sound played on the device.

	Header
	TwSound.h

	Sample
	TBD

TwSndSetBassBoost

	Purpose
	Gets the current application volume.

	Prototype
	Err TwSndSetBassBoost(UInt16 boostLevel)

	Parameters
	boostLevel
	A number between 0 and smdMaxAmp (64) for the new volume. 0 means no bass boost, 64 means maximum bass boost.

	Result
	sysErrParamErr if the boostLevel is out of range.

	Comments
	

	Header
	TwSound.h

	Sample
	TBD

TwSndSetMute

	Purpose
	Mute or unmute the device.

	Prototype
	void TwSndSetMute(Boolean mute, Uint32 unmuteAt)

	Parameters
	mute
	The new setting, true to mute, false to unmute.

	
	unmuteAt
	The time when the mute is canceled. Use zero to mute indefinitely.

	Result
	

	Comments
	This does not change the result or the behavior of TwSndGetVolume and TwSndSetVolume. If the volume is changed while muted, the changed value is the new value on unmute.

	Header
	TwSound.h

	Sample
	TBD

TwSndGetMute

	Purpose
	Query the mute setting.

	Prototype
	Boolean TwSndSetMute(Uint32* unmuteAt)

	Parameters
	unmuteAt
	The time when the mute is canceled. Use zero to mute indefinitely.

	Result
	The mute setting – true if muted, false if not.

	Comments
	

	Header
	TwSound.h

	Sample
	TBD

TwSndPlaySystemSound

	Purpose
	Play a standard system sound.

	Prototype
	Err TwSndPlaySystemSound(enum TwSysBeepTag beepID)

	Parameters
	beepID
	The ID of the sound to play. An invalid ID returns a sysErrParamErr.

	Result
	

	Comments
	

	Header
	TwSound.h

	Sample
	TBD

