

®

AMX™ User's Guide

First Printing: June 1, 1996
Last Printing: November 1, 2007

Copyright © 1993 - 2007

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114

AMX User's Guide KADAK i

TECHNICAL SUPPORT

KADAK Products Ltd. is committed to technical support for its software products. Our
programs are designed to be easily incorporated in your systems and every effort has
been made to eliminate errors.

Engineering Change Notices (ECNs) are provided periodically to repair faults or to
improve performance. You will automatically receive these updates during the product's
initial support period. For technical support beyond the initial period, you must purchase
a Technical Support Subscription. Contact KADAK for details. Please keep us informed
of the primary user in your company to whom update notices and other pertinent
information should be directed.

Should you require direct technical assistance in your use of this KADAK software
product, engineering support is available by telephone, fax or e-mail. KADAK reserves
the right to charge for technical support services which it deems to be beyond the normal
scope of technical support.

We would be pleased to receive your comments and suggestions concerning this product
and its documentation. Your feedback helps in the continuing product evolution.

KADAK Products Ltd.
206 - 1847 West Broadway Avenue
Vancouver, BC, Canada, V6J 1Y5

Phone: (604) 734-2796
Fax: (604) 734-8114
e-mail: amxtech@kadak.com

ii KADAK AMX User's Guide

Copyright © 1993-2007 by KADAK Products Ltd.
All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language or computer
language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior
written permission of KADAK Products Ltd., Vancouver, B.C., CANADA.

DISCLAIMER

KADAK Products Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability and fitness for any particular purpose.
Further, KADAK Products Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of KADAK Products Ltd. to notify any
person of such revision or changes.

TRADEMARKS

AMX in the stylized form and KwikNet are registered trademarks of KADAK Products Ltd.
AMX, AMX/FS, InSight, KwikLook and KwikPeg are trademarks of KADAK Products Ltd.
Microsoft, MS-DOS and Windows are registered trademarks of Microsoft Corporation.
All other trademarked names are the property of their respective owners.

AMX User's Guide KADAK iii

AMX USER'S GUIDE
Table of Contents

Page
Section 1: System Description

1. AMX Overview 1

1.1 Introduction .. 1
1.2 Glossary ... 3
1.3 AMX Nomenclature ... 7

2. General AMX Operation 9

2.1 Introduction to Multitasking ... 9
2.2 AMX Operation ... 11
2.3 AMX Managers .. 17
2.4 Starting AMX ... 20

3. Application Tasks 23

3.1 Task Creation ... 23
3.2 Task States ... 25
3.3 Starting a Task .. 27
3.4 Task Priority ... 28
3.5 Task Execution ... 29
3.6 Task and Event Synchronization .. 30
3.7 Task Timing ... 31
3.8 Ending a Task ... 32
3.9 Message Passing ... 33
3.10 Restart Procedures .. 38
3.11 Exit Procedures .. 39
3.12 Task Enhancements .. 40

4. Interrupt Service Procedures 41

4.1 The Processor Interrupt Facility ... 41
4.2 ISPs for External Interrupts .. 42
4.3 Nested Interrupts .. 45
4.4 ISP/Task Communication .. 46
4.5 Task Error Traps .. 49
4.6 Non-Maskable Interrupt ... 51
4.7 Special Interrupts ... 52
4.8 Fatal Exception Traps .. 54
4.9 Vector Table Initialization ... 55

5. AMX Timing Control 57

5.1 Introduction to Timing Facilities .. 57
5.2 AMX Clock Handler and Kernel Task ... 59
5.3 Interval Timers and Timer Procedures ... 60
5.4 Task Time Slicing .. 63
5.5 Time/Date Manager .. 66

iv rev9 KADAK AMX User's Guide

AMX USER'S GUIDE
Table of Contents (Cont'd.)

Page
Section 1: System Description (Cont'd.)

6. AMX Semaphore Manager 73

6.1 Introduction .. 73
6.2 Semaphore Use ... 75
6.3 Semaphore Applications .. 79
6.4 Priority Inversion Avoidance ... 84

7. AMX Event Manager 85

7.1 Introduction .. 85
7.2 Event Synchronization ... 87
7.3 Event Flag Application ... 89

8. AMX Mailbox Manager 93

8.1 Introduction .. 93
8.2 Mailbox Use ... 95
8.3 Mailbox Application .. 98

9. AMX Message Exchange Manager 101

9.1 Introduction .. 101
9.2 Message Exchange Use .. 103
9.3 Message Exchange Application ... 106

10. AMX Buffer Manager 111

10.1 Introduction .. 111
10.2 Buffer Pool Use .. 112
10.3 Buffer Applications .. 115
10.4 Buffer Manager Caveats ... 117

11. AMX Memory Manager 119

11.1 Introduction .. 119
11.2 Nomenclature ... 121
11.3 Memory Pool Use .. 122
11.4 Private Memory Allocation .. 126

12. AMX Circular List Manager 127

12.1 Circular Lists .. 127
12.2 Circular List Use .. 128
12.3 Circular List Structure .. 129

AMX User's Guide KADAK v

AMX USER'S GUIDE
Table of Contents (Cont'd.)

Page
Section 1: System Description (Cont'd.)

13. AMX Linked List Manager 131

13.1 Introduction .. 131
13.2 Linked Lists .. 132
13.3 Linked List Use .. 134

14. Advanced Topics 137

14.1 Fatal Exit .. 137
14.2 User Error Procedure .. 139
14.3 Task Scheduling Hooks .. 140
14.4 Abnormal Task Termination .. 141
14.5 Task Suspend/Resume .. 145
14.6 Message Exchange Tasks ... 146

Section 2: System Construction

15. AMX System Configuration 149

15.1 System Configuration Module ... 149
15.2 System Configuration Builder .. 150
15.3 Using the Builder ... 152
15.4 System Parameter Definition .. 156
15.5 AMX Object Allocation ... 159
15.6 Restart/Exit Procedure Definition .. 161
15.7 Task Definition ... 163
15.8 AMX Object Definitions .. 166

16. AMX Target Configuration 181

16.1 Target Configuration Module ... 181
16.2 Target Configuration Generation ... 182
16.3 Target Parameters ... 185

Section 3: Programming Guide

17. AMX Service Procedures 187

17.1 Introduction .. 187
17.2 Summary of Services ... 188

18. AMX Procedures 195

18.1 Introduction .. 195
 Alphabetic List of Procedures ... 197

vi rev9 KADAK AMX User's Guide

AMX USER'S GUIDE
Table of Contents (Cont'd.)

Page
Appendices

A. AMX Reserved Words 345

B. AMX Error Codes 347

C. Configuration Generator Specifications 351

C.1 Introduction ... 351
C.2 User Parameter File Specification ... 352
C.3 System Configuration Template .. 358
C.4 Porting the Configuration Generator ... 361

D. AMX Library Construction 363

D.1 Building the AMX Library .. 363
D.2 A Custom AMX Library ... 367

Index Index-1

AMX USER'S GUIDE
Table of Figures

Page
Section 1: System Description

Figure 2.2-1 AMX General Operation ... 12
Figure 3.2-1 AMX Task State Diagram ... 26
Figure 3.9-1 Message Transmission ... 35
Figure 3.9-2 Message Reception .. 36
Figure 5.4-1 Simple Time Slicing .. 64
Figure 5.4-2 Interrupted Time Slicing .. 64
Figure 5.5-1 Time/Date Format Specification Parameter 71
Figure 13.2-1 Doubly Linked Lists ... 133

Section 2: System Construction

Figure 15.2-1 AMX Configuration Building Process 151
Figure 15.3-1 Configuration Manager Screen Layout 153
Figure 16.2-1 AMX Target Configuration Generation 183
Figure 16.3-1 Target Parameter File .. 185

Appendices

Figure C.2-1 User Parameter File ... 352

AMX Overview KADAK 1

1. AMX Overview

1.1 Introduction
The AMX™ Multitasking Executive provides a simple solution to the complexity of real-
time multitasking. AMX supervises the orderly execution of a set of application program
modules called tasks. AMX allows the system designer to concentrate on the application
without becoming overly concerned about the multitasking aspects of the solution.

AMX is based on concepts proven over the past thirty years in minicomputer and
microprocessor applications in process control environments. AMX simplifies real-time
software implementation by providing the system designer with a well-defined set of
rules.

AMX gives the system designer complete flexibility and control over the microcomputer
configuration employed. A real-time clock must be provided in the configuration if
AMX timing facilities are to be employed.

AMX provides a wide variety of services from which the real-time system designer can
choose. Many of the services are optional and, if not used, will not even be present in
your AMX system. The AMX managers are all optional.

The purpose of this manual is to provide the system designer and applications
programmer with the information required to properly configure and implement an
AMX-based real-time operating system. It is assumed that you are familiar with the
architecture of the processor on which you will be using AMX. It is further assumed that
you are familiar with the rudiments of microprocessor programming including the
concepts of code, data and stack separation.

AMX is available in C source format to ensure that regardless of your development
environment, your ability to use and support AMX is uninhibited. The source program
also includes a small portion programmed in the assembly language of the target
processor.

The C programming language, commonly used in real-time systems, is used throughout
this manual to illustrate the features of AMX.

2 rev9 KADAK AMX Overview

Section Summary

This manual is divided into three sections. Each section is divided into chapters.

Section 1 of this manual describes the AMX Multitasking System and how it is used.
Separate chapters are provided for each of the AMX managers.

Section 2 describes the AMX System Configuration Builder and the manner in which it is
used to create your AMX System Configuration Module and Target Configuration
Module.

Section 3 is the application programming guide. It provides detailed descriptions of all of
the AMX service procedures which are available in the AMX Library.

AMX Guides

Guidelines for the installation and proper use of AMX when coding in C are provided in
the separate Getting Starting guide. The Getting Started guide includes a description of
the AMX Sample Program provided with AMX as well as useful debugging tips.

This manual describes the use of AMX for all target processors. Target specific
requirements or programming considerations are provided in a separate AMX Target
Guide.

This manual describes the use of AMX in a toolset independent fashion. References to
specific assemblers, compilers, librarians, linkers, locators and debuggers are purposely
omitted. The AMX Tool Guide provides guidance for the proper use of AMX with each
toolset with which AMX has been tested.

The AMX Timing Guide discusses general timing issues related to the use of AMX.
Timing metrics generated for specific boards and software development toolsets are also
provided. These timing figures can be used as guidelines to expected AMX performance,
but are not to be construed as product specifications. The AMX Timing Guide is
packaged with AMX as an on-line document. The manual is not provided in printed
form.

AMX Overview KADAK rev9 3

1.2 Glossary
Binary and Bounded Semaphores

A bounded semaphore is a counting semaphore whose signal count
can range from 0 to an upper limit less than or equal to 16383. If
the upper limit is 1, the semaphore is a binary semaphore.

Buffer Pool A collection of data buffers whose use is controlled by the AMX
Buffer Manager.

Buffer Pool Id The handle assigned to a buffer pool by AMX for use as a unique
buffer pool identifier.

Circular List An application data structure used to maintain a list of 1, 2 or 4
byte elements with the ability to add and remove elements at both
the top (head) and bottom (tail) of the list.

Clock Handler The name given to the AMX procedure which is called by the ISP
root which services the hardware clock interrupt.

Clock Tick The interrupt generated by a hardware clock.

Conforming ISP An Interrupt Service Procedure consisting of an ISP root which
calls an Interrupt Handler which has the right to make calls to a
subset of the AMX service procedures.

Counting Semaphore
A particular type of AMX semaphore used for event signalling or
for controlling access by tasks to multiple resources. A counting
semaphore is limited to a maximum count of 16383. Binary
semaphores and bounded semaphores are counting semaphores
with a fixed upper limit.

Envelope The private data storage element used by AMX to pass a message
to a mailbox or message exchange.

Error Code A series of signed integers used by AMX to indicate error or
warning conditions detected by AMX service procedures.

Event Group A set of 16 or 32 events whose access and signalling is controlled
by the AMX Event Manager.

Event Group Id The handle assigned to an event group by AMX for use as a unique
event group identifier.

Exit Procedure An AMX or application procedure executed by AMX during the
exit phase when an AMX system is shut down.

Fatal Error A condition detected by AMX which is considered so abnormal
that to proceed might risk catastrophic consequences. Examples
include, but are not limited to, insufficient memory in the AMX
Data Segment or division by zero in an ISP.

FIFO First in, first out. Usually used to refer to the ordering of elements
in a queue, circular list or linked list.

4 rev9 KADAK AMX Overview

Group Id See Event Group Id.

Handle An identifier assigned by AMX for use by your application to
reference a private AMX system data item.

Interrupt Handler An application procedure called from an ISP root to service an
interrupting device.

Interrupt Service Procedure (ISP)
An AMX or application procedure which is executed in response
to an external device interrupt request.

ISP See Interrupt Service Procedure

ISP root The ISP code fragment (produced by the AMX Configuration
Generator) which informs AMX that an interrupt has occurred and
calls an application Interrupt Handler.

Kernel Task The private AMX task which is responsible for all timing control
and event sequencing in an AMX system.

Linked List An application data structure used to maintain a doubly-linked list
of arbitrary application data elements with the ability to add and
remove elements at head, tail or specified positions in the list.

List Element An 8-bit, 16-bit or 32-bit value which can be added to or removed
from a circular list.

Mailbox An AMX data structure consisting of a single message queue.
Mailboxes allow the interchange of messages between two or more
cooperating components (tasks, ISPs, etc.) of an AMX system.

Mailbox Id The handle assigned to a mailbox by AMX for use as a unique
mailbox identifier.

Memory Block A portion of a memory pool that has been allocated for use by one
or more tasks.

Memory Pool A collection of memory sections whose use is controlled by the
AMX Memory Manager.

Memory Pool Id The handle assigned to a memory pool by AMX for use as a
unique memory pool identifier.

Memory Section A contiguous region of memory assigned to the AMX Memory
Manager for allocation to application tasks.

Message Application information passed by AMX in an envelope to a
mailbox or message exchange.

Message Exchange An AMX data structure that consists of four message queues, each
for messages of a different priority. The message exchanges allow
the interchange and prioritization of messages between two or
more cooperating components (tasks, ISPs, etc.) of an AMX
system.

AMX Overview KADAK rev9 5

Message Exchange Id
The handle assigned to a message exchange by AMX for use as a
unique message exchange identifier.

Message Exchange Task
An application task to which a private message exchange has been
attached such that the task automatically receives messages from
the exchange.

Message Queue An AMX data structure used to manage messages sent to a
message exchange. A separate message queue is provided for each
of the four message priorities which a message exchange can
support.

Message Priority Identifies which of a message exchange's four message queues is
to receive the AMX message.

Nonconforming ISP An Interrupt Service Procedure which bypasses AMX (has no ISP
root) and hence cannot use any AMX service procedures.

RAM Alterable memory used for data storage and stacks.

Resource Semaphore (Basic and Priority Inheritance)
A particular type of AMX semaphore used to provide access to an
entity such as a math coprocessor, disk file or non-reentrant library
whose ownership is to be controlled by the AMX Semaphore
Manager. A resource semaphore which supports priority
inheritance can be used to avoid task priority inversions.

Restart Procedure An AMX or application procedure executed by AMX during the
initialization phase when an AMX system is started.

ROM Read only memory of all types including PROMs, EPROMs and
EAROMs.

Segment An area of memory in which AMX code or data is stored.
Segments are sometimes called sections or regions according to the
nomenclature adopted for a particular processor.

Semaphore An AMX data structure which can be used by the AMX
Semaphore Manager to provide an event signalling mechanism or
mutually exclusive access by tasks to specific user facilities.

Semaphore Id The handle assigned to a semaphore by AMX for use as a unique
semaphore identifier.

Slice Interval The interval of time allocated to a task which is time sliced.

Slot One of n locations used to store list elements in a circular list.

System Configuration Module
A software module, produced by the AMX System Configuration
Builder, which defines the characteristics of a particular AMX
application.

6 rev9 KADAK AMX Overview

System Tick A multiple of the hardware clock tick from which the fundamental
AMX unit of time is derived. All time intervals in an AMX system
are measured in multiples of the system tick.

Tag A 4-character name that can be assigned to any AMX system data
structure when it is created. A tag can be used to find the identifier
of a task, timer, semaphore, event group, mailbox, message
exchange, memory pool or buffer pool with a particular name.

Target Configuration Module

A software module, produced by the AMX Configuration
Generator, which defines the characteristics of your target
hardware as used in a particular AMX application.

Task An application procedure which is executed by AMX in a way
which makes it look as though all such procedures are executing at
once.

Task Control Block (TCB)
A private data structure maintained by AMX for each task in the
system.

Task Id The handle assigned to a task by AMX for use as a unique task
identifier.

Task Priority The priority at which a task executes. Tasks which have the same
task priority are actually ordered in priority according to the order
in which the tasks were created, barring changes in priority caused
by time slicing or the use of priority inheritance resources.

TCB See Task Control Block

Time Slice The process by which AMX allows tasks having the same priority
to share the use of the processor in a round robin fashion.

Timer A facility provided by AMX to permit precise interval
measurement in AMX applications.

Timer Id The handle assigned to a timer by AMX for use as a unique timer
Identifier.

Timer Procedure An application procedure which is executed by the AMX Kernel
Task whenever the corresponding timer interval expires.

AMX Overview KADAK 7

1.3 AMX Nomenclature
The following nomenclature standards have been adopted throughout the AMX User's
Guide.

Numbers used in this manual are decimal unless otherwise indicated. Hexadecimal
numbers are indicated in the format 0xABCD.

The terminology A(Table XYZ) is used to define addresses. It is read as "the address of
Table XYZ".

Read/write memory is referred to as RAM. Read only memory (non-volatile storage) is
referred to as ROM.

AMX symbol names and reserved words are identified as follows:

cjkkpppp AMX C procedure name pppp for service of class kk
cjxtttt AMX structure name of type tttt
xttttyyy Member yyy of an AMX structure of type tttt

CJ_ID AMX object identifier (handle)
CJ_ERRST Completion status returned by AMX service procedures
CJ_CCPP Procedures use C parameter passing conventions
CJ_ssssss Reserved symbols defined in AMX header files

CJ_ERXXXX AMX Error Code XXXX
CJ_WRXXXX AMX Warning Code XXXX
CJ_FEXXXX AMX Fatal Exit Code XXXX

CJZZZFFF.XXX AMX filenames
CJZZZ.H Generic AMX include file

The ZZZ in each AMX filename is the 3-digit AMX part number used by KADAK to
identify the AMX target processor. For example, file CJZZZSD.H is an AMX header file
for any version of AMX. File CJ999SD.H is the same AMX header file for the version of
AMX which operates on the processor identified by KADAK part number 999.

File CJZZZ.H is a generic include file which includes the subset of target specific AMX
header files needed for compilation of your application C code. By including file
CJZZZ.H in your source modules, your AMX application becomes readily portable to
other target processors.

The generic include file CJZZZ.H is a copy of the corresponding part numbered AMX
file. For example, if you are developing for the processor identified by KADAK part
number 999, the file CJZZZ.H is a copy file CJ999.H.

Throughout this manual examples are provided in C. In general, code examples are
presented in lower case. File names are shown in upper case. C code assumes that an
int is 32 bits on 32 bit processors or 16 bits on 16 bit processors as is common for most
C compilers.

8 KADAK AMX Overview

This page left blank intentionally.

General AMX Operation KADAK 9

2. General AMX Operation

2.1 Introduction to Multitasking
A real-time system is characterized by the need to respond rapidly to events occurring
asynchronously in time. A multitasking system is one in which a number of activities or
processes must be performed simultaneously without interference with each other. A
system in which several activities must operate simultaneously with time-critical
precision is called a real-time multitasking system.

The AMX Multitasking Executive provides a simple solution to the complexity of real-
time multitasking. AMX supervises the orderly execution of a set of application program
modules called tasks. Each task solves a particular problem and provides a specific
functional capability within the system.

As we all know, the microprocessor can only do one thing at a time. Fortunately, it does
all things very quickly. However, to get the effect that all activities are occurring
simultaneously, it is necessary to rapidly switch back and forth from one process to
another in a well controlled fashion. It is AMX which organizes and controls the use of
the microprocessor to achieve this apparent concurrent execution of tasks.

Each task solves a particular problem or provides a specific functional capability within
the system. Each task executes independent of other tasks. Facilities are provided,
however, to permit tasks to co-operate to achieve a common goal. This process in which
more than one task is allowed to share the use of a single processor is called multitasking.
The software program which makes it possible is AMX.

What a task does is completely application dependent. In fact, the most difficult aspect
of system design is to logically break the problem into a set of tasks which, if
implemented, will achieve the desired goal. The following example is presented to
illustrate one way in which a simple real-time alarm logging system can be implemented.

Example

Assume that it is necessary to periodically scan a set of digital alarm inputs. When any
alarm is detected, a message is to be logged on a printer. The message is to include a
description of the alarm and the time of day at which it occurred.

Careful examination of this problem indicates that in fact it is three problems. First, a set
of digital inputs must be scanned for the detection of alarms. Second, a message must be
printed. Finally, the time of day must be maintained for inclusion in the message.

Three problems usually result in three tasks. Our example is no exception. A time of day
task is required to maintain the date and time within the system. The task must be
executed once each second if time is to be maintained to the nearest second. We will
ignore the requirement to somehow set the proper time and date. (Isn't that another task?)

10 KADAK General AMX Operation

Alarm scanning will likely be hardware dependent. We will simplify matters by
assuming that a scanning task must examine all digital inputs every 100 ms. The task
must be capable of detecting alarm changes in the digital inputs. When an alarm is
detected, the scanning task must initiate the logging of a message.

However, the scanning task is not allowed the luxury of waiting until the message is
printed. It must continue scanning for additional alarms at the same 100 ms rate. The
scanning task must, therefore, send to the message task parameters identifying the alarm
which has occurred and the time at which it was detected.

The message task is very simple to describe. It receives parameters identifying the time
at which a particular alarm occurred. The task must output to a printer a message
describing the alarm.

The foregoing example, although very simple, illustrates many of the features of a real-
time multitasking system. At first, the implementation of the required set of tasks may be
difficult to envision. Two of the tasks must operate periodically at different intervals.
The third task, printing, is such a slow process that the other two tasks must be allowed to
execute with higher priority. Moreover, provision must be made to allow the alarm
parameters to continue piling up on the message task when alarms are occurring at a rate
faster than can be printed. (What would we do if we had to print high priority alarms first
and delay the printing of lower priority alarms?)

The implementation of the proposed solution is greatly simplified by AMX. AMX will
supervise the execution of the three tasks in the defined priority order. Timing facilities
are provided by AMX with a resolution governed by the hardware clock. AMX supports
message passing between tasks. AMX allows these messages to pile up at the destination
message exchange at any of four priority levels because automatic message queuing with
priority sorting is an inherent feature of AMX.

This introduction to multitasking is not exhaustive. The intent is to remove some of the
mystery from the multitasking concept. The above example is intended to inspire
confidence in your ability to understand AMX and use it to solve real-time problems.

General AMX Operation KADAK 11

2.2 AMX Operation

AMX Startup

Each AMX-based system consists of the AMX executive program and a set of
application tasks and interrupt service procedures. This collection of programs resident
in the memory of the microprocessor configuration represents the entire operating
system.

The manner in which the operating system begins execution is application dependent. In
ROM-based systems, automatic hardware vectoring to the program start address is often
implemented. In RAM-based systems, the program is first loaded from some storage
medium (ROM, hard disk, diskette, etc.) or downloaded from one processor to another.
Once the program is loaded, it is started at its start address by the loader.

Figure 2.2-1 illustrates the general operation of an AMX system. Execution begins in the
user domain providing the opportunity for hardware specific and application dependent
setup prior to the initialization of the AMX system. For example, hardware interfaces
may require custom configuring. In some systems, it might be desirable to perform a
memory integrity check before system startup is permitted.

Once all custom initialization has been performed, the program calls the AMX entry
procedure cjkslaunch. Operating characteristics are defined in an AMX System
Configuration Module and an AMX Target Configuration Module. It is possible to
predefine specific tasks and timers which will be automatically created by AMX during
its initialization phase. AMX initializes itself and places all application tasks and timers
into an idle state.

Once AMX has initialized all of its internal variables and structures, it executes a
sequence of user provided Restart Procedures. These procedures can invoke AMX
services to start tasks and initialize interval timers.

12 KADAK General AMX Operation

Control Flow

Function calls

InterruptsInitialization

Restart
Procedure

Task Scheduler Services

Start

Timer
Procedure

Interrupt
Supervisor

Clock
Handler

Interrupt
Service

Procedure

Kernel Task

User AMX

Task A

Task N

Clock

Figure 2.2-1 AMX General Operation

General AMX Operation KADAK 13

The Task Scheduler

Following system initialization, AMX proceeds to its Task Scheduler. The Task
Scheduler searches its list of available tasks to determine the highest priority task capable
of execution. Task execution priorities are determined by the system designer. If no task
is ready to begin execution, AMX sits with interrupts enabled, waiting for some external
event to generate an interrupt.

AMX begins task execution at the task's defined start address. The task executes as
though it were the only program in the system. Services offered by AMX can be invoked
by the task by procedure calls as indicated in Figure 2.2-1.

Once a task begins execution, it appears to operate without interruption. The interrupts
that are periodically taking place are completely hidden from the task by the AMX
Interrupt Supervisor and Task Scheduler. The task, once executing, inhibits the
performance of all tasks of priority lower than its own. The task continues to execute
until it decides to relinquish control, even if only temporarily, by calls to AMX.

The task ends by returning to the AMX Task Scheduler which again finds the next
highest priority task ready to execute and gives it control of the processor. A task, once
executing, is free to call any of the AMX task services. For instance, a task can send a
message to a mailbox or message exchange, wait for an event or wait for a timed interval.
If the task wishes to wait for an event, the AMX service procedure will suspend the task
and request the AMX Task Scheduler to force execution of the next highest priority task
ready for execution.

AMX acts as the context switcher supervising the orderly execution of application tasks.
AMX employs a preemptive, priority-driven scheduling algorithm which ensures that the
highest priority task which is ready to do useful work always has control of the processor.

AMX will switch tasks if it receives a request from the executing task to perform an
operation which, of necessity, invokes a task of higher priority. For instance, the
executing task may request AMX to start a higher priority task.

14 KADAK General AMX Operation

The Interrupt Supervisor

Tasks execute with the processor interrupt facility enabled to permit service of external
devices. When an external interrupt occurs, the task is interrupted in the manner dictated
by the processor. The processor automatically saves the return address and some subset
of the processor state (registers, flags, etc.) and branches to an Interrupt Service
Procedure (ISP). The exact vectoring method is determined by the hardware
configuration employed in the system.

Two types of ISPs exist: nonconforming ISPs and conforming ISPs.

A nonconforming ISP must quickly service the device to remove the interrupting
condition. The ISP must preserve all registers which it uses. The nonconforming ISP
cannot make calls to any AMX service procedures.

A conforming ISP can make use of a subset of the AMX service procedures. A
conforming ISP consists of an ISP root and an Interrupt Handler. The processor vectors
to the ISP root which informs the AMX Interrupt Supervisor that the interrupt has
occurred. The Interrupt Supervisor preserves the state of the interrupted task and, if
necessary, switches to an interrupt stack. The Interrupt Supervisor then calls the
associated Interrupt Handler.

The Interrupt Handler must quickly service the device to remove the interrupting
condition. The handler is free to make procedure calls to a subset of the AMX service
facilities. When device service is completed, the AMX Interrupt Supervisor dismisses
the interrupt.

The AMX Interrupt Supervisor monitors calls made by the Interrupt Handler to AMX
service procedures. If no such calls have been made, AMX automatically restores the
state of the interrupted task and returns directly to the interrupted task at its point of
interruption.

The Interrupt Handler may have requested AMX to initiate or resume execution of some
task of higher priority than the interrupted task. If so, the AMX Interrupt Supervisor
suspends the interrupted task and marks it as ready to resume execution at the earliest
opportunity. The AMX Task Scheduler is then invoked to determine the highest priority
task capable of execution.

The AMX Interrupt Supervisor supports nested interrupts on processors which provide
this capability. If interrupts nest, the Interrupt Supervisor defers its task switching checks
until all of the concurrent interrupts have been serviced.

Note

The conforming ISP root is created by the AMX
Configuration Generator in your AMX Target
Configuration Module.

General AMX Operation KADAK 15

Timing Facilities

The AMX Timer Manager provides a Clock Handler and a Kernel Task to provide
complete timing control for your real-time application. The AMX Clock Handler is
independent of any particular hardware configuration. If AMX timing facilities are to be
utilized, a real-time clock must be included in the configuration.

The hardware clock interrupt must be serviced by a conforming ISP consisting of an ISP
root and a clock Interrupt Handler. The ISP root calls your clock Interrupt Handler to
dismiss the clock interrupt. It then calls the AMX Clock Handler to derive an AMX
system tick.

The AMX Clock Handler triggers the AMX Kernel Task if required. The Kernel Task is
triggered at the user defined system tick interval if, and only if, there is any outstanding
timing activity required in the system. In this case, the interrupted task is suspended and
the AMX Kernel Task begins execution.

The AMX Kernel Task executes as the highest priority task in the system. The AMX
Kernel Task monitors all tasks which are in a timed wait state. If a task's timer expires,
the AMX Kernel Task primes the task to resume execution with a timeout indication.

The AMX Kernel Task also services all expiring application interval timers. Whenever
an application interval timer expires, the corresponding application Timer Procedure is
executed. This procedure can invoke a subset of the AMX services to send messages,
signal events or wake tasks. If the timer is defined to be periodic, the AMX Kernel Task
automatically restarts it with the predefined period.

16 KADAK General AMX Operation

Message Queuing

One of the more powerful features of AMX is its ability to queue messages for tasks.
The queuing facility permits messages to pile up in a controlled fashion, freeing the ISP,
Timer Procedure or task which is sending the message to continue with its appointed
function. If a task sends a message, it can suspend itself until the message has been
received and processed by some other task.

The AMX message queuing facility is further enhanced by allowing the messages to
queue at any of four priority levels. A task can therefore receive messages from a variety
of callers with the messages already sorted in order of priority by AMX.

The system designer describes the exact message queuing requirements in a mailbox or
message exchange definition. For each message exchange, you can specify which, if any,
of the four message queuing priority levels are to be supported. For each mailbox, only
one message queue is provided. You also specify the required message nesting depth for
each of these message queues.

AMX maintains a free list of message envelopes. These envelopes are used by AMX to
transmit messages to mailboxes and message exchanges. The caller's message
parameters are moved into a free envelope which is then added to the message queue of
the destination mailbox or message exchange.

The AMX message queuing facility is especially useful in event logging applications. In
such applications, messages are transmitted to a printing exchange by any task wishing to
log an event. The printing task waits on the printing exchange and processes the requests
as they become available. High priority messages can easily be forced to precede low
priority messages using the AMX message priority feature. Finally, any task wishing to
wait until its particular message has been logged can do so by informing AMX of its
intent at the time the message is sent.

AMX Shutdown

An AMX system can be shut down in the same orderly fashion in which it was started. A
task initiates a shutdown with a call to the AMX exit procedure cjksleave.

It is the caller's responsibility to assure that the AMX system is in a reasonable state to
permit a shutdown. For instance, all device I/O operations should be stopped and all
timing activity should be curtailed.

The AMX shutdown procedure executes a series of user Exit Procedures which can
restore the original environment which existed prior to starting the AMX system. Device
interfaces can be reprogrammed and interrupt vectors restored if necessary.

Once all of the Exit Procedures have been executed, AMX returns to the point at which
AMX was originally launched.

General AMX Operation KADAK 17

2.3 AMX Managers
AMX provides a set of managers to simplify event synchronization, resource
manipulation and memory allocation. Not all applications will make use of all of the
managers. The system designer can decide which of the AMX managers is best suited
for a particular application.

The Time/Date Manager provides Y2K compliant time of day calendar support if
required. The AMX calendar clock includes second, minute, hour, day, month, year and
day of the week. AMX services are provided to set and read the calendar clock.
A formatting procedure is also provided to translate the calendar time and date from the
internal format in which it is maintained by AMX into an ASCII string in several of the
most popular formats.

An application procedure can be tied to the calendar clock and called at one second
intervals to permit simple time of day event scheduling.

The Semaphore Manager provides two types of semaphores each with priority queuing
and timeout: resource semaphores and counting semaphores.

A resource semaphore can be used to provide controlled access to your resources. It uses
a binary semaphore to limit access to each resource to one task at a time. Ownership and
release of a resource is governed by calls to the Semaphore Manager. A resource
semaphore offers the unique characteristic of identifying each resource owner. Only the
task which owns a resource is permitted to release it.

General purpose counting semaphores can be created for mutual exclusion and resource
management. Tasks must request the Semaphore Manager for access to the resource
controlled by such a semaphore. The task can specify the priority of its request to use the
semaphore. If the semaphore is not free, the task will be forced to wait for its
availability. The task will be placed on the semaphore wait queue at the priority specified
by the task. Optionally, the task can specify a timeout interval limiting the time the task
is prepared to wait.

A task, ISP or Timer Procedure can signal the semaphore with a call to the Semaphore
Manager. The Semaphore Manager grants access to the semaphore to the task, if any,
waiting at the top of the semaphore's wait queue.

The Event Manager provides a convenient method for synchronizing one or more tasks
to events detected in Interrupt Service Procedures, Timer Procedures and other tasks. A
task requests the Event Manager to suspend its operation until any one of a particular set
of events occurs. Alternatively, the task can request to wait until all of a set of event
conditions are met. Optionally, the task can specify a timeout interval limiting the time
the task is prepared to wait. More than one task can be waiting for the same event or set
of events.

When a task, ISP or Timer Procedure detects an event, it signals the event with a call to
the Event Manager. The Event Manager checks to see if the event has resulted in an
event combination for which one or more tasks are waiting. If so, the tasks which were
waiting are allowed to resume execution.

18 KADAK General AMX Operation

The Mailbox Manager provides a general purpose message queuing facility. Tasks,
ISPs or Timer Procedures can send messages to a mailbox. The messages are ordered in
the mailbox according to their order of arrival. When a task requests a message from a
mailbox, it is given the first message in the mailbox. If no message is available, the task
will be forced to wait. The task will be placed on the mailbox wait queue at the wait
priority specified by the task. The task can specify a timeout interval limiting the time
the task is prepared to wait. This interval can be from no wait to an indefinite wait.
When a message subsequently arrives, it is immediately given to the task waiting at the
top of the mailbox's wait queue.

The Message Exchange Manager provides a general purpose prioritized message
queuing facility. Tasks, ISPs or Timer Procedures can send messages to a message
exchange to be queued at any of four priority levels. When a task requests a message
from a message exchange, it is given the highest priority message available. If no
message is available, the task will be forced to wait. The task will be placed on the
message exchange wait queue at the wait priority specified by the task. Optionally, the
task can specify a timeout interval limiting the time the task is prepared to wait. This
interval can be from no wait to an indefinite wait. When a message subsequently arrives,
it is immediately given to the task waiting at the top of the message exchange's wait
queue.

The Buffer Manager provides fast, efficient access to multiple pools of buffers, each
buffer representing a fixed size block of memory. This form of memory management
meets the requirements of most typical applications and is best suited for real-time use in
which memory block availability must be predictable and in which the penalties for
memory fragmentation cannot be tolerated.

Application modules can request the Buffer Manager to get a buffer from a pool. If no
buffer is available, a task can wait for a buffer to become available. Optionally, the task
can specify a timeout interval limiting the time the task is prepared to wait. This interval
can be from no wait to an indefinite wait. When a buffer subsequently becomes
available, it is immediately given to the task waiting at the top of the buffer pool's wait
queue.

When released, the buffer is automatically returned by the Buffer Manager to the pool to
which the buffer belongs. Buffer ownership can be increased so that more than one task
can simultaneously own a shared buffer. Special facilities are provided to assure that if a
buffer is owned by more than one task, it is only returned to its pool when the slowest
owner finally releases it.

The Memory Manager controls the dynamic allocation of memory to tasks in the
multitasking environment. Multiple sections of user defined memory can be controlled
by the Memory Manager. The memory in each section must be contiguous but the
sections themselves do not have to be contiguous.

A task can request the Memory Manager to allocate a contiguous block of memory of any
size. When finished with the block, the task requests the Memory Manager to free the
memory for use by other tasks.

A particularly unique feature of the Memory Manager permits any block of memory
(including those acquired from the Memory Manager) to be treated as memory from
which smaller private blocks can be dynamically allocated.

General AMX Operation KADAK 19

The Circular List Manager provides a general purpose circular list facility for
maintaining compact lists of 8-bit, 16-bit or 32-bit variables. Circular lists are
particularly useful for managing character streams associated with input/output devices.

The Linked List Manager provides a fast, general purpose doubly-linked list facility for
maintaining lists of arbitrary application data structures (objects).

The Linked List Manager removes the tedium and the frequent errors usually encountered
when each application must manipulate the linkages of different types of objects on
different lists. Objects can reside on multiple lists at the same time, a characteristic
frequently encountered in real problems but ignored by most list manipulation software.

20 rev8 KADAK General AMX Operation

2.4 Starting AMX
An AMX operating system consists of AMX, the subset of its managers which you
choose to use and your complement of application programs. All of these modules are
connected together to form the AMX operating system as described in the AMX Tool
Guide.

Before launching AMX, you must establish the required operating mode for the particular
target processor you are using. Guidelines are presented in the corresponding AMX
Target Guide.

AMX is always launched from your main program (or startup module) by calling
application procedure cjkslaunch as in the following example.

void main(void)
{

:
:
cjkslaunch(); /* Launch AMX */
}

Source code for a typical launch procedure cjkslaunch is provided in AMX module
CJZZZUF.C. It is expected that you will edit this module to provide any custom startup or
shutdown processing you deem necessary.

AMX disables the interrupt system at the time you launch AMX. Interrupts remain
disabled during the startup process while AMX initializes its internal parameters. AMX
enables interrupts prior to calling each of your Restart Procedures.

Your AMX operating system can be launched in two ways: temporarily or permanently.
By default, procedure cjkslaunch launches AMX for temporary use since this is the type
of launch most useful during system development.

The launch type, temporary or permanent, is determined by a configuration parameter in
your AMX Target Configuration Module (see Chapter 16).

General AMX Operation KADAK 21

Temporary Launch

Your AMX operating system can be started, allowed to run for a while and then stopped.
This type of operation is called a temporary launch. The launch type is defined as
temporary in your AMX Target Configuration Module.

The main procedure calls cjkslaunch to initiate the launch. The cjkslaunch procedure
in AMX module CJZZZUF.C calls AMX at its entry point cjksenter passing it a pointer
to the User Parameter Table in your System Configuration Module.

When an AMX system is launched for temporary execution, it executes until one of your
application tasks calls the AMX shutdown procedure cjksleave requesting an orderly
shutdown of the AMX system (see Chapter 3.11). The cjksleave procedure in AMX
module CJZZZUF.C calls AMX at its shutdown exit point cjksexit.

The cjksleave caller can return information to the procedure that launched AMX
describing the reason for the shutdown as illustrated in the following example.

/* Start AMX for temporary execution */

#include "CJZZZ.H" /* AMX Headers */

/* User Parameter Table */
extern CJ_CCONST1 struct cjxupt CJ_CCONST2 cj_kdupt;

/* Application exit info */
void *exitinfop; /* A(exit information) */
int exitstatus; /* Exit status */

int CJ_CCPP cjkslaunch(void)
{

cjksenter(&cj_kdupt); /* Launch AMX */

if (exitstatus) {
/* Interpret <exitstatus> and <*exitinfop> to */
/* determine your application's reason for exit. */
}

return(exitstatus);
}

void CJ_CCPP cjksleave(
int status, /* Exit status */
void *infop) /* Pointer to exit info */
{

exitstatus = status; /* Return info to launcher */
exitinfop = infop;
cjksexit(); /* Shutdown AMX */
}

22 KADAK General AMX Operation

Permanent Launch

In most applications, your AMX operating system is resident in ROM or loaded into
RAM. AMX is started and given permanent control of the processor. The launch type is
defined as permanent in your AMX Target Configuration Module.

The main procedure calls cjkslaunch to initiate the launch. The cjkslaunch procedure
calls AMX at its entry point cjksenter passing it a pointer to the User Parameter Table
in your System Configuration Module.

Since the launch is permanent, there is no return from cjksenter.

/* Start AMX for permanent execution */

#include "CJZZZ.H" /* AMX Headers */

/* User Parameter Table */
extern CJ_CCONST1 struct cjxupt CJ_CCONST2 cj_kdupt;

void CJ_CCPP cjkslaunch(void)
{

cjksenter(&cj_kdupt); /* Start AMX; never returns */
}

Application Tasks KADAK rev8 23

3. Application Tasks

3.1 Task Creation
The AMX Multitasking Executive provides a simple solution to the complexity of real-
time multitasking. AMX supervises the orderly execution of a set of application program
modules called tasks. Each task solves a particular problem and provides a specific
functional capability within the system.

The maximum number of tasks in a system is user defined in your System Configuration
Module (see Chapter 15.4). The defined maximum sets an upper limit on the number of
actual tasks that can be created by the application.

Tasks can be created in two ways. Tasks can be predefined in your AMX System
Configuration Module which is processed by AMX at startup. Tasks defined in this
fashion are automatically created by AMX but are not started. Restart Procedures and
tasks can also dynamically create tasks.

AMX procedure cjtkbuild or cjtkcreate is used to create a task. AMX allocates a
task and returns a task identifier to the caller. The task id is a handle which uniquely
identifies the particular task. It is the responsibility of the application to keep track of the
task id for future reference to the task.

When a task is created, you can provide a unique 4-character task tag to identify the task.
The tag can be used subsequently in a call to cjksfind to find the task id allocated by
AMX to the particular task.

AMX uses the information in the task definition to construct a Task Control Block (TCB)
for the task. The TCB of each task is used exclusively by AMX to control task
execution. At any instant in time, the content of the TCB, as maintained by AMX,
completely describes the state of the corresponding task.

24 KADAK Application Tasks

Tasks which do not receive messages are written as C procedures without formal
parameters. These tasks must be started using AMX procedure cjtktrigger. For
example, a task that immediately ends would appear as follows:

void CJ_CCPP task1(void)
{

}

Tasks which must receive a message are written as C procedures which immediately call
cjmbwait or cjmxwait to wait for a message from a mailbox or message exchange.
These tasks must be started using the AMX procedure cjtktrigger and sent the
necessary parameters through a cjmbsend or cjmxsend call. For example, a task which
receives a message and then ends would appear as follows:

static CJ_ID mailboxid;

void CJ_CCPP task2(void)
{

struct cjxmsg message;
/* Wait on mailbox */
/* Wait at priority 5 indefinitely */

cjmbwait(mailboxid, &message, 5, 0);
}

AMX also supports a special type of task called a message exchange task. A message
exchange task has its own private message exchange in which the task receives messages.
The messages are automatically delivered to the task on the task's stack ready for
processing by the task. Tasks of this type are created as described in Chapter 14.6.

Application Tasks KADAK 25

3.2 Task States
A task is always in one of the following states:

Idle
Ready
Run
Wait
Halt

When a task is created, AMX assigns it a Task Control Block and sets it in the idle state.
An idle task has no outstanding requests to execute pending. It is waiting to be triggered.

A ready task has an outstanding request to execute or is ready to resume execution after
having been interrupted or waiting.

A task which is executing is the only task which is in the run state.

A task is in the wait state when it is blocked pending the occurrence of some event. The
wait state is always qualified with an indication in the TCB as to what the task is waiting
for.

The halt state is reserved for use by KADAK debug utilities to suspend all task execution
for debugging purposes.

Figure 3.2-1 illustrates the task states and shows the state transitions which are possible.
The halt state is not explicitly shown.

26 KADAK Application Tasks

event of interest
or timeout occurs

cjtktrigger - trigger a task

cjtkwait -wait
cjtkwaitm -timed wait
cjtkdelay -timed delay
cjmbsend -send message to mailbox

and wait for ack
cjmbwait -wait on a mailbox
cjmxsend -send message to message

exchange and wait for ack
cjmxwait -wait on a message exchange
cjrmrsv -reserve a resource
cjsmwait -wait on a semaphore
cjevwait -wait for event
cjbmget -wait for a buffer

task ends or is
interrupted

no higher priority
task running

no requests
outstanding

Idle

Ready

Run

Wait

Figure 3.2-1 AMX Task State Diagram

Application Tasks KADAK 27

3.3 Starting a Task
At startup, AMX initializes all predefined application tasks into an idle state. Once idle,
a task cannot execute until AMX receives a directive to start the task. How then does an
AMX system get off the ground?

Only one AMX directive is provided to start a task. The request for task execution is
called a trigger. The cjtktrigger call is used to trigger a task.

Requests to start a task can be issued in any of the following application modules.

Restart Procedure
Application Task
Interrupt Service Procedure
Timer Procedure

The Restart Procedure provides the first opportunity to start an application task. At
startup, after all predefined tasks have been created, AMX executes all of the Restart
Procedures described in the Restart Procedure List. A Restart Procedure can be used to
request execution of one or more tasks in the system. The AMX Task Scheduler
subsequently starts the highest priority task capable of execution.

Once a task is executing, it is allowed to trigger any task in the system, including itself.
AMX guarantees that the called task is executed in response to one caller at a time.

Requests for task execution can also be initiated in response to device interrupts. When
an interrupt occurs, the device Interrupt Service Procedure (ISP) is executed. The ISP
can issue a cjtktrigger call to start a particular task. Whenever an ISP requests to start
a task, AMX temporarily suspends the interrupted task, thereby leaving it in a state ready
to resume execution. The AMX Task Scheduler is then invoked to start (or return to) the
highest priority task ready for execution. It is this type of operation that permits a task to
begin execution in response to an event which is considered to be of higher priority than
the task which was running.

AMX also permits tasks to be executed at periodic intervals. For example, a periodic
application interval timer (see Chapter 5) can be started by your application. When the
timer expires, the AMX Kernel Task executes the associated application Timer
Procedure. The Timer Procedure can issue a cjtktrigger call to AMX to request
execution of any given task.

28 KADAK Application Tasks

3.4 Task Priority
Task priorities are used by the AMX Task Scheduler to determine which task to execute.
At all times, the task with the highest priority which is capable of execution will run.

A task's priority is defined at the time the task is created. Task priorities range from 0
(highest) to 255 (lowest). Priorities 0 and 128 to 255 inclusive are reserved for AMX
use. The AMX Kernel Task executes at priority 0 above all other tasks.

Application tasks can be assigned priorities 1 to 127 inclusive.

If more than one task is assigned the same priority, AMX will assign the tasks relative
priorities according to the chronological order in which they were created with the first
created task having the higher priority.

A task may change its priority or the priority of any other task. This practice is not
recommended however. Experience has shown that this facility is rarely required and all
too often is abused. The task's new priority remains in effect until you decide, if ever, to
change it again.

Application Tasks KADAK 29

3.5 Task Execution
AMX starts a task by making a procedure call to the task. AMX starts execution of a task
at the task start address specified in the task's definition. The task is started in response
to a request for its execution. Requests can come from Restart Procedures, tasks,
Interrupt Service Procedures or Timer Procedures (see Chapter 3.3).

AMX starts the task when no tasks of higher priority are capable of execution. A task
can therefore only execute if all higher priority tasks are idle or suspended for some
reason.

When AMX starts the task, the following conditions exist:

Interrupts are enabled.
All registers are free for use.
The task stack is in use.

Once a task begins execution, it has complete control of the processor. The interrupt
system must be left enabled to permit device interrupts to be serviced. If a task must
disable interrupts for some reason, it is recommended that this period be kept as short as
possible so that the system's interrupt response time is not degraded.

The application task can execute without concern for the fact that interrupts will occur
and will be serviced. If higher priority tasks become ready for execution, the task will be
suspended temporarily by AMX. When higher priority tasks become suspended or have
completed their operation, the interrupted task will be permitted by AMX to resume
execution from its point of interruption.

Occasionally a task must perform a sequence of operations without interference by other
tasks. If the sequence is too long to permit interrupts to be disabled, the task can request
AMX to become temporarily privileged. During the period of privileged execution,
interrupts remain enabled but execution of any higher priority task, including the AMX
Kernel Task, is inhibited. Privileged operations should be kept as short as possible.

30 KADAK Application Tasks

3.6 Task and Event Synchronization
AMX offers several simple forms of task/event synchronization.

Using the cjtkwait call, a task can unconditionally wait for an event. The event can be
task dependent, device dependent or time dependent. The task, having issued a cjtkwait
call, remains suspended unconditionally until another task, an Interrupt Service Procedure
or a Timer Procedure issues a cjtkwake call requesting AMX to wake up the particular
waiting task. This cjtkwait/cjtkwake pair can be used to provide simple event
synchronization.

AMX also supports this form of synchronization with an automatic timeout facility. A
task can issue a cjtkwaitm call specifying the maximum interval which the task is
willing to wait for the event to occur. If no other task, ISP or Timer Procedure issues a
cjtkwake call in the interim, AMX will automatically wake up the task when the interval
expires. The task receives from AMX an indication whether or not a timeout occurred.

This synchronization facility offers the advantage of simplicity. The mechanism is an
inherent part of the AMX kernel. The disadvantage is that the event signaller must know
the task id of the task which is waiting.

The Mailbox Manager and the Message Exchange Manager allow a task to be
synchronized to another task using their call and wait message passing facilities. A task
sends a message to a mailbox or a message exchange using the AMX cjmbsend or
cjmxsend call and waits for acknowledgement. The receiving task must use the AMX
procedure cjmbwait or cjmxwait to wait for a message at the mailbox or message
exchange. When the receiving task eventually receives the sender's message, it can issue
a cjtkmsgack call to wake the calling task. The sender will then resume execution
knowing full well that its message has already been received by the task to which it was
sent. If the receiving task does not issue a cjtkmsgack call, AMX will do so
automatically when the receiving task ends.

The Semaphore Manager provides counting semaphores with queuing and timeout
facilities for mutual exclusion and resource management. It also offers a unique resource
semaphore which extends to semaphores the concept of ownership of the corresponding
resource.

The Event Manager offers the best solution for complex event coordination. It permits a
task to be synchronized to any or all of a particular set of events. It also allows more than
one task to wait for the same events.

Each of the synchronization methods provided by the managers share several common
features. In each case, the signaller does not need to know the identity of task(s) waiting
for its signal. When multiple tasks wait on a semaphore, event group, mailbox or
message exchange, each task specifies the priority at which it wishes to wait. Finally,
any task waiting on a semaphore, event group, mailbox or message exchange can specify
the maximum interval which the task is willing to wait.

Application Tasks KADAK 31

3.7 Task Timing
The AMX Clock Handler and Kernel Task act as a Timer Manager providing timing
facilities for use by tasks. It has been shown in Chapter 3.6 that tasks can wait for an
event to occur with an automatic timeout. The task is suspended following its wait
request until the event occurs or the interval specified in the call expires.

The cjtkdelay call to AMX can also be used by a task to implement a delay. The delay
interval is specified in system ticks. The task is suspended until the interval expires.
AMX assures that the task automatically resumes execution, provided that no higher
priority task is able to execute.

Other timing functions required by the task can be implemented using interval timers (see
Chapter 5). Timers are 32-bit counters. Timing resolution is in multiples of the system
tick. The AMX routine cjtmconvert is available to convert milliseconds to the
equivalent number of system ticks.

Timers can be created at any time by a call to the AMX routine cjtmcreate.

A timer is started by writing the timer interval to it using the AMX procedure cjtmwrite.
At any instant, a task can read the time remaining in the interval by calling AMX routine
cjtmread. A timer can be stopped by writing zero to it. A timer can be deleted when it
is no longer required by a call to cjtmdelete. These simple procedures give the task
complete control over interval timing.

Whenever an interval timer expires, AMX executes an associated Timer Procedure.
Using this feature, a task can start an interval timer and rest assured that, when the
interval expires, the action determined by the associated Timer Procedure will be
performed. Since the Timer Procedure is called by the AMX Kernel Task which has the
highest priority in the system, the Timer Procedure executes at a priority higher than that
of any application task.

Interval timers must be used by tasks wishing to measure time. Instruction counting
loops are of no value in a multitasking system. Since a task is being constantly
interrupted and occasionally suspended to execute higher priority tasks, any timing
performed by counting instructions within a program loop will be in error.

32 KADAK Application Tasks

3.8 Ending a Task
When a task completes its appointed function, it must relinquish control of the processor
to AMX. The AMX Task Scheduler will then give control of the processor to the next
highest priority task ready to execute.

AMX starts a task by a procedure call to the task at the task start address. The task
program is, therefore, a procedure. When the task is finished, it returns to AMX in
normal end-of-procedure fashion.

A task may wish to abort execution under error conditions. The task's stack may be
deeply nested when the error condition arises. To allow a task to terminate under these
circumstances, AMX provides the cjtkend exit facility. Any task which calls cjtkend is
immediately terminated by AMX.

A task executes once for every trigger request which AMX receives to start the task.
When the task ends as just described, AMX examines the task to determine if any
additional requests for execution of the task are pending. If outstanding trigger requests
are present, AMX flags the task as ready to run again. The AMX Task Scheduler will
then immediately start this task again. This process continues until the task finally ends
and no requests for execution of the task are present. At that time, AMX places the task
into the idle state.

If the task has retrieved a message from a mailbox or message exchange, AMX must
perform some additional processing when the task ends. AMX checks to see if the
message came from a task. If so, AMX tests to see if the sender is waiting for an
acknowledgement of receipt of its message. If the sender is waiting, AMX sets it into the
ready state ready to resume execution.

It is possible that an application task may never end. Such a task, once started, runs
forever. For example, a task might wait for an event and then do some event-dependent
processing. Once the processing is complete, the task waits for the next event.

In this example, the task never reaches a logical end. Note, however, that the task does
become suspended awaiting an event. A task which has no logical end and which never
suspends itself is said to be compute bound.

Even if a task does wait, it is still possible that the task may effectively be compute
bound. For instance, assume that a low priority task repetitively sends a message to a
higher priority task and waits for an answer. Also assume that the higher priority task
will always provide an immediate response. In this case, the lower priority task will
always be allowed to resume after its message is sent even though a temporary
suspension does occur. The task will block all lower priority tasks.

Note

A compute bound task inhibits execution of all lower
priority tasks.

Application Tasks KADAK 33

3.9 Message Passing
AMX supports the passing of a message to a task through a mailbox or message
exchange.

Messages can be sent to a task by:

Application Tasks
Interrupt Service Procedures
Timer Procedures
Restart Procedures
Exit Procedures

You can send a message to a mailbox or message exchange using the AMX procedure
cjmbsend or cjmxsend respectively. The maximum number of parameter bytes that can
be sent in a message is configured by you in your System Configuration Module. The
parameter bytes are completely application dependent.

Messages must be integer aligned. In the following examples, it is assumed that your C
compiler aligns arrays and structures on boundaries that are integer aligned.

int i;
short int iarray[6];
char carray[12];
struct msg {

char m1;
char m2;
short int m3;
long m4;
} msga;

The following calls will send the specified message to the mailbox with mailbox id mbid
or to the message exchange with exchange id mxid without waiting for a response:

wack = CJ_NO; /* Do not wait */
cjmbsend(mbid, &i, wack); /* Send i */
cjmbsend(mbid, iarray, wack); /* Send iarray */
cjmxsend(mxid, carray, wack, 0); /* Send carray at */

/* message priority 0 */
cjmxsend(mxid, &msga, wack, 3); /* Send msga at */

/* message priority 3 */

The messages are stored in FIFO order in a mailbox or message exchange message
queue. The caller specifies the priority level of the message when sending to a message
exchange. The priority level (0, 1, 2 or 3) determines the message queue at the message
exchange into which the message will be placed.

If the caller is a task, it can request AMX to suspend its operation until the task receiving
the message acknowledges its receipt of the message. To wait for acknowledgement, the
task sending the message sets wack non-zero in its cjmbsend or cjmxsend call.

34 KADAK Application Tasks

AMX uses message envelopes for parameter transmission. AMX gets a free envelope,
moves the caller's message parameters into it and adds the envelope to the mailbox or
message exchange message queue.

If the sender requested to wait, AMX inserts information into the envelope which allows
AMX to remember that the sending task has been suspended waiting for
acknowledgement of the receipt of its message by some other task.

Note that when AMX returns from a call to send a message, the memory occupied by the
caller's message is available for reuse by the caller.

Note

AMX always copies CJ_MAXMSZ bytes from the sender's
message into the envelope.

Consequently, the transmitted message will unconditionally
be CJ_MAXMSZ bytes in length even if your message is a
single integer.

Application Tasks KADAK rev8 35

Figure 3.9-1 provides an example of the manner in which messages are allowed to queue
on a message exchange. In the example, the following situation is assumed to exist at the
message exchange on which the destination task is waiting.

The message exchange has four message queues corresponding to the four priority levels
at which it can post messages. Level 0 is the highest priority; level 3 is the lowest
priority. The example shows that no messages are pending on levels 0 or 2. Three
messages, I, J and K, are pending on level 1. Two messages, L and M, are pending on
level 3. One message, X, is currently being serviced by the destination task.

The destination task has been interrupted and it is ready to resume execution. As a result
of the interrupt, task YY was allowed to execute because it was of higher priority than the
destination task. Task YY made a request to AMX to send a message to the message
exchange at message priority level 1. As a result of this request, AMX moved the
message parameters from task YY into a message envelope and added this envelope to
the bottom of the level 1 message queue associated with the message exchange. The
result is shown in Figure 3.9-1.

Message K
Message J

Message I
Message M

Message L

Message YY

0 2 31

MESSAGE EXCHANGE

Message X
being processed

Figure 3.9-1 Message Transmission

36 KADAK Application Tasks

In due course the destination task will continue to execute and complete its processing of
the current message, X. The destination task will then request AMX for a message from
the message exchange three more times in succession to process messages I, J and K.
Finally, the message from task YY will be retrieved from the message exchange and
processed.

Figure 3.9-2 illustrates the situation at the destination task at the instant it begins to
process the message from task YY. Provided that no additional calls to post messages to
the message exchange have occurred, the messages will be as shown. Message queues 0,
1 and 2 are empty. Messages L and M are still pending at priority level 3. The message
from task YY is ready for processing by the destination task.

When the destination task retrieves a message from the message exchange, the message
parameters are already removed from the envelope and copied to the storage area
provided by the task, usually on the task's stack. The message parameters received by the
destination task are in exactly the same order as they were sent by the caller.

Message M
Message L

0 2 31

MESSAGE EXCHANGE

Message YY
bbeeiinngg pprroocceesssseedd

Figure 3.9-2 Message Reception

Application Tasks KADAK 37

It is important to note that a copy of the sender's message parameters is sent to the
destination task. Once the sender's parameters have been copied into the message
envelope, the caller is free to reuse the parameter storage if desired. Thus, as soon as
procedure cjmbsend or cjmxsend returns to its caller, the parameter variables are free for
reuse.

The destination task must provide a pointer to storage large enough to hold the
parameters it is to receive. Since AMX unconditionally delivers messages of CJ_MAXMSZ
bytes in length, the message storage must be of at least that size.

The AMX task which receives a variety of messages should declare a union rmsg in order
to reference the different messages. Note that the union must include one instance of
structure cjxmsg to ensure that rmsg is large enough to hold any AMX message.

union rmsg {
struct cjxmsg amxmsg;
char c;
int i;
short int iarray[6];
char carray[12];
struct msg msga;
};

Then the task can be written as follows:

static CJ_ID mxid;

void CJ_CCPP taskn(void)
{

union rmsg msg;

cjmxwait(mxid, &msg, 0, 0); /* Wait at priority 0 forever*/
:
:
The received message can now be accessed from union msg
:
}

In this simple example, the task receiving the messages has no obvious way of
determining how to interpret the message. Is the message one character (msg.c) or a
whole structure (msg.msga)? This dilemma is usually solved by including an application
specific operation code with all messages.

Note that we have declared the task's received message as a union and then used variable
msg to access the parameters in the message. AMX passes parameters by value with no
concern for the restrictions imposed by various high level languages. Hence a whole
array or structure up to a maximum of CJ_MAXMSZ bytes can be passed by value by AMX
as a message.

38 KADAK Application Tasks

3.10 Restart Procedures
The manner in which the operating system begins execution is application dependent.
Execution begins in the user domain providing the opportunity for hardware specific and
application dependent setup prior to the initialization of the AMX system. For example,
hardware interfaces may require custom configuring. In some systems, it might be
desirable to perform a memory integrity check before system startup is permitted.

AMX disables the interrupt system at the time you launch AMX. Interrupts remain
disabled during the startup process.

Once AMX has initialized all of its internal variables and structures, it enables interrupts
and executes the sequence of application Restart Procedures provided in the Restart
Procedure List in your System Configuration Module (see Chapter 15.7). These
procedures can invoke AMX services to start tasks and initialize interval timers.

When AMX calls a Restart Procedure, the following conditions exist:

Interrupts are enabled.
All registers are free for use.
The AMX Kernel Stack is in use.

Restart Procedures are written as C procedures without formal parameters.

void CJ_CCPP rrproc(void) /* Restart Procedure */
{

:
Do restart processing
:
}

Restart Procedures can enable specific device interrupts if required. Note that interrupts
from a device should not be enabled until the application ISP has been installed and made
ready to handle the interrupting device.

A Restart Procedure must not issue any AMX directives which would in any way
suspend or terminate task execution.

Note

Restart Procedures must only use AMX services which are
marked in Chapter 18 as
� Restart Procedure

Restart Procedures use the AMX Kernel Stack. In addition to the minimum stack size
required for the AMX Kernel Stack, you must allocate sufficient stack to satisfy the worst
case requirements of all application Restart Procedures.

Application Tasks KADAK 39

3.11 Exit Procedures
An AMX system can be shut down in an orderly fashion by a task call to procedure
cjksleave. The manner in which the operating system ends execution is application
dependent. For example, hardware interfaces may require restoration to their initial
states.

AMX supervises the shutdown process by sequentially calling all of the application Exit
Procedures in the order defined in the Exit Procedure List in your System Configuration
Module (see Chapter 15.7). Once all Exit Procedures have been executed, AMX returns
to the original program that launched AMX.

When AMX calls an Exit Procedure, the following conditions exist:

Interrupts are enabled.
All registers are free for use.
The stack is the task stack which was in effect when cjksleave was called.

Exit Procedures are written as C procedures without formal parameters.

void CJ_CCPP epproc(void) /* Exit Procedure */
{

:
Do exit processing
:
}

Exit Procedures execute in the context of the task which issued the cjksleave call. They
are therefore free to use all services normally available to tasks. For instance, an Exit
Procedure could use cjmbsend to send a shutdown message via a mailbox to a task and
wait for that task to do its shutdown processing. When the Exit Procedure resumes after
the cjmbsend call, it returns to AMX which then calls the next Exit Procedure in the list.

An Exit Procedure must not issue any AMX directives which would in any way terminate
task execution.

Note

Exit Procedures must only use AMX services which are
marked in Chapter 18 as
� Exit Procedure

Exit Procedures use the stack of the task which called cjksleave. It is therefore
essential that the task which calls cjksleave be allocated sufficient stack to satisfy the
worst case requirements of all application Exit Procedures.

40 KADAK Application Tasks

3.12 Task Enhancements
AMX offers several task enhancements which, although rarely used, can occasionally
come in handy. These enhancements are briefly summarized below.

Task Control Block Extension

Within a task's Task Control Block, 16 bytes are reserved for the private use of the task.
Their use is completely determined by the application.

A Task Control Block for a particular task can be located using procedure cjtktcb. The
private storage is located in structure member xtcbuser in the Task Control Block.

You must use structure definition cjxtcbs from header file CJZZZSD.H to access this
storage.

Stack Fences

When AMX creates a task, it installs a fence at the top and bottom of the task's stack.
The fence is a 32-bit value containing the unusual pattern 0x55555555 ('UUUU').

The 4-character task tag is copied to the stack immediately below the top fence as a
debugging aid to identify each stack's owner.

These fences can be of significant help during the development and testing of your AMX
system. When you are trying to detect a fault in your system, it is often advisable to
examine your task stacks carefully to be sure that none of the fences have been altered.
An altered fence is an indication that you have a task which is overflowing or
underflowing its stack or, worse yet, a bad piece of code which is writing to some task's
stack in error.

Interrupt Service Procedures KADAK 41

4. Interrupt Service Procedures

4.1 The Processor Interrupt Facility
The key to event-driven, real-time, multitasking systems is the processor's interrupt
facility. Tasks execute with the interrupt facility enabled permitting the system to
respond to a real-time event.

The hardware interrupt mechanism is an automatic facility provided by the processor.
AMX permits the system designer to determine how the hardware interrupt facility will
be employed.

Tasks must execute with the interrupt facility enabled.

From time to time, AMX must inhibit interrupts while it performs a critical, indivisible
sequence of operations. AMX keeps such intervals very short. For instance, even while
AMX is switching from one task to another, it is able to respond to interrupts.

To further improve interrupt response, AMX permits nesting of interrupts on processors
which support this feature. As soon as the interrupt request has been cleared, interrupts
can be enabled to permit response to other external events.

When an interrupt occurs, the processor saves enough processor dependent information to
permit the processor to eventually resume the interrupted process. The manner in which
this is done is of course processor dependent. In some cases, a processor interrupt mask
is set to n thereby disabling all external interrupts of priority less than or equal to n. On
some RISC processors, this ability to nest interrupts is provided by AMX microcode.

Hardware external to the processor usually identifies the interrupt source. The processor
uses the interrupt identifier in a processor dependent fashion to find the unique device
dependent pointer. Program execution resumes at the address specified by this pointer.
The program located at this address is called an Interrupt Service Procedure (ISP).

In general, an ISP saves the registers it wishes to use, services the device, restores the
registers, enables the interrupt and returns to the executing program at the point of
interruption.

If more than one device is connected to the same external interrupt source, your ISP must
determine the interrupt source in one of several ways. The simplest, but slowest, is a
software poll of the devices. The ISP tests each device sequentially to determine the
source of the interrupt and branches to a device service procedure to handle the specific
interrupt.

Alternatively, external hardware can be added to provide unique vectoring for each
device which can generate interrupts. If this approach is adopted, then a separate ISP
must be provided for each device.

The AMX Interrupt Supervisor simplifies ISP operation within the AMX multitasking
environment. The AMX Interrupt Supervisor permits an ISP to communicate with any
task in the system. The remainder of this chapter describes how ISPs are used within a
system.

42 KADAK Interrupt Service Procedures

4.2 ISPs for External Interrupts
Two types of ISPs exist: nonconforming ISPs and conforming ISPs.

Nonconforming ISPs

A nonconforming ISP must quickly service the device to remove the interrupting
condition. The ISP must preserve all registers which it uses. The nonconforming ISP
cannot make calls to any AMX service procedures.

The nonconforming ISP executes in the context of the process (task, ISP, AMX kernel)
which was interrupted. The ISP therefore uses the stack of the interrupted process.
Consequently, all stacks must be large enough to meet the worst case needs of all
nonconforming ISPs.

The nonconforming ISP can enable interrupts to allow interrupt service by other higher
priority nonconforming ISPs. The nonconforming ISP MUST NOT allow an interrupt to
a conforming ISP.

Conforming ISPs

A conforming ISP is intended for use with AMX. A conforming ISP consists of an ISP
root and an Interrupt Handler. The processor vectors to the ISP root which informs the
AMX Interrupt Supervisor that the interrupt has occurred. The Interrupt Supervisor
preserves the state of the interrupted task and, if necessary, switches to an interrupt stack.
The Interrupt Supervisor then calls the associated Interrupt Handler. Your handler must
perform all services required by the device. Your handler is free to make procedure calls
to a subset of the AMX service facilities.

The conditions that will exist upon entry to your Interrupt Handler are dependent upon
the target processor, the tool set which you are using and the language in which your
Interrupt Handler is programmed. In general:

Interrupts are disabled (masked) at a device dependent priority level.
A subset of the registers are free for use.
The AMX Interrupt Stack is in use.

When your Interrupt Handler executes, external interrupts of priority less than or equal to
the interrupting device are always disabled. Your Interrupt Handler must NOT enable
any interrupts of lesser or equal priority. Your handler can enable higher priority external
interrupts if permitted by the target processor.

When device service is completed, your Interrupt Handler returns to the ISP root which
informs the AMX Interrupt Supervisor that interrupt service is complete.

AMX monitors calls made by the Interrupt Handler to AMX service procedures. If no
such calls have been made, the AMX Interrupt Supervisor automatically restores the state
of the interrupted task and allows the ISP root to return directly to the interrupted task at
its point of interruption.

Interrupt Service Procedures KADAK 43

If the Interrupt Handler requested AMX to initiate or resume execution of some task of
higher priority than the interrupted task, the AMX Interrupt Supervisor suspends the
interrupted task and marks it as ready to resume execution at the earliest opportunity.
The AMX Task Scheduler is then invoked to determine the highest priority task capable
of execution.

If interrupts nest, the Interrupt Supervisor defers its task switching checks until all of the
concurrent interrupts have been serviced.

In due course, AMX returns to the ISP root ready to resume execution at the point of
interruption. It is important to note that, because of task switching invoked by the AMX
Interrupt Supervisor, there may be a significant delay before AMX returns to the ISP root
and resumes execution of the interrupted task.

Note

Interrupt Handlers must only use AMX services which are
marked in Chapter 18 as
� ISP

The Interrupt Handler is free to use the following AMX service procedures to
communicate with tasks.

cjmbsend Send a message to a mailbox
cjmxsend Send a message to a message exchange
cjtktrigger Request a task to execute
cjtkwake Wake a task known to be waiting for this interrupt
cjsmsignal Signal to a semaphore
cjevsignal Signal one or more events in an event group

Interrupt Handlers are also free to use the following AMX buffer management and timing
facilities.

cjbmget Get a buffer
cjbmfree Free a buffer
cjbmuse Add to buffer use count

cjtmwrite Start/stop an interval timer
cjtmread Read an interval timer

The full range of AMX circular list handling routines (see Chapter 12) can be used by
application Interrupt Handlers. These circular lists can be especially useful to provide
character buffering. For example, an input device Interrupt Handler can add characters to
the bottom of a circular list while a related task removes them from the top of the list.

The AMX List Manager services (see Chapter 13) can also be used by Interrupt Handlers.
Note that an Interrupt Handler should not manipulate keyed lists.

44 KADAK Interrupt Service Procedures

Conforming ISP Construction

The construction of an Interrupt Service Procedure (ISP) to service an external interrupt
is a simple process.

The conforming ISP consists of two parts: the ISP root and your Interrupt Handler. The
ISP root is a code fragment generated automatically for you in your Target
Configuration Module by the AMX Configuration Generator (see Chapter 16). A short
text file called a Target Parameter File is edited to define the set of conforming ISPs you
wish to construct. For each ISP, you provide the name of the corresponding Interrupt
Handler which will service the device. The AMX Configuration Generator is then used
to convert your Target Parameter File into an AMX Target Configuration Module
containing your customized application ISP root.

The Interrupt Handler can be written in assembly language or C. Use assembly
language if speed of execution is critical. Follow the guidelines provided in the AMX
Target Guide for your target processor.

Interrupt Handlers can be written as C procedures with or without a single 32-bit formal
parameter. The following example of a device Interrupt Handler illustrates how little
application code must be programmed to satisfy AMX. The example in Chapter 4.7
shows an Interrupt Handler which receives an application dependent parameter.

void CJ_CCPP deviceih(void)
{

local variables, if required
:
Clear the source of the interrupt request.
Perform all device service.
:
}

Note

The conforming ISP root is created by the AMX
Configuration Generator in your AMX Target
Configuration Module.

Interrupt Service Procedures KADAK 45

4.3 Nested Interrupts
AMX supports nested interrupts on those processors which provide this feature. The
AMX Interrupt Supervisor maintains a private nesting level indicator. AMX is informed
of the start and end of each interrupt by the ISP root.

When AMX sees that a task has been interrupted, it switches to a predefined Interrupt
Stack. If AMX detects that the interrupt has occurred during execution of a device
Interrupt Service Procedure, then no stack switching occurs. The interrupted ISP is
suspended and the new ISP is started.

When an ISP ends, AMX takes action based on the state of its nesting indicator. When a
nested interrupt ISP is completed, AMX returns to the interrupted ISP. When the last
interrupt ISP (corresponding to the first task interrupt) is completed, AMX prepares to
return to the interrupted task. If, as a consequence of interrupt service, a significant event
has been declared, AMX suspends the interrupted task and goes to the AMX Task
Scheduler to find the highest priority task which is ready to execute.

Since the AMX Interrupt Stack is used for nesting interrupts, the stack size must be large
enough to support the worst case combination of nested ISPs. Each nested interrupt
requires that the Interrupt Stack be increased to meet the needs of the additional nested
ISP.

Warning

You must not permit a conforming ISP to interrupt a
nonconforming ISP.

The AMX clock ISP is a conforming ISP.

46 KADAK Interrupt Service Procedures

4.4 ISP/Task Communication
AMX provides a set of service procedures to ease the communication between tasks and
device Interrupt Handlers. These AMX procedures simplify event synchronization and
permit parameter passing to tasks.

Wait/Wake Synchronization

The cjtkwait/cjtkwake pair of procedures is often used for event synchronization. A
task issues a cjtkwait call to AMX to wait unconditionally for an event. When the
event occurs, as indicated by an interrupt, the Interrupt Handler makes a cjtkwake call
identifying the task which it wishes to wake up.

Synchronization capability can be further enhanced using the automatic timeout facility
provided by AMX. The task issues a cjtkwaitm call indicating the maximum interval
for which it is willing to wait for the event. When the interrupt occurs, the Interrupt
Handler issues the cjtkwake call to wake up the task. The task resumes execution with
an indication provided to it by AMX that the event did occur. If, on the other hand, the
interrupt does not occur within the specified timeout interval, the AMX Kernel Task will
wake up the task. In this case, the task resumes execution with an indication provided by
AMX that a timeout occurred. When the task resumes execution, it is, therefore, capable
of determining if the event occurred within the expected interval.

Semaphore Synchronization

The AMX Semaphore Manager provides an even more powerful synchronization
capability. It provides the automatic timeout facility and also allows more than one task
to wait for the same event, with each task determining its own waiting priority.
Furthermore, the Interrupt Handler need not know the identity of the waiting tasks (if
any) or their chosen waiting priorities. The AMX Semaphore Manager will
automatically ensure that the task with the highest waiting priority is given access to the
semaphore first.

Synchronization using counting semaphores with an initial count of zero is achieved as
follows. A task issues a cjsmwait call indicating the maximum interval for which it is
willing to wait for the semaphore and its chosen waiting priority. When the interrupt
occurs, the Interrupt Handler issues a cjsmsignal call to wake up the task with the
highest waiting priority that is blocked on the semaphore. The task will always know
when it resumes execution whether the event actually occurred or whether the maximum
wait interval elapsed.

Interrupt Service Procedures KADAK 47

Event Group Synchronization

The AMX Event Manager provides another form of synchronization. It allows more than
one task to be waiting for a specific event or for a combination of events. It also provides
the automatic timeout facility. The Interrupt Handler does not have to know which tasks
(if any) are waiting for its event.

Synchronization using an event group is achieved as follows. A task clears an event flag
in an event group and then issues a cjevwait call indicating the maximum interval it is
willing to wait for the event to occur. The Interrupt Handler issues a cjevsignal call to
set the particular event flag for which it is responsible. The Event Manager then allows
all tasks which are waiting for that particular event flag to be set to resume execution.
The task will always know when it resumes execution whether the event actually
occurred or whether the maximum wait interval elapsed.

Mailbox and Message Exchange Synchronization

An Interrupt Handler can communicate with a task by sending a message to a mailbox or
message exchange. The AMX Mailbox Manager and Message Exchange Manager allow
more than one task to wait for a message from a mailbox or message exchange with each
task determining its own wait priority and maximum wait interval. An Interrupt Handler
does not need to know the identity of the waiting tasks (if any) or their chosen waiting
priorities.

Synchronization via a mailbox or message exchange is achieved as follows. A task calls
cjmbwait or cjmxwait to wait on a particular mailbox or message exchange,
respectively, indicating the priority of its request and the maximum interval it is willing
to wait for a message to arrive.

When the interrupt occurs, the Interrupt Handler calls cjmbsend or cjmxsend to send a
message to the mailbox or message exchange. The Interrupt Handler must not wait for
acknowledgement of receipt of the message. The Mailbox Manager or Message
Exchange Manager delivers the message to the task and allows the task to resume
execution. If no interrupt occurs before the timeout interval expires, the AMX Kernel
Task will force the task to resume execution with a timeout indication.

For example, a control panel might be used by an operator to initiate actions within a
system. An interrupt is generated when the operator depresses a pushbutton requesting a
specific function. In response to the interrupt, the Interrupt Handler reads a command
register at the control panel to determine the action to be taken. Data, such as set-point
settings, would also be read by the Interrupt Handler.

The Interrupt Handler interprets the command, determines the mailbox on which the task
in the system responsible for performing the requested function is waiting and issues a
cjmbsend call to send a message to that task. The data retrieved from the control panel is
transmitted to that task as parameters in the message.

Chapter 3.9 provides a complete description of the parameter passing process.

48 KADAK Interrupt Service Procedures

Task Triggering

An Interrupt Handler can communicate with a task by invoking the task's execution.
When an interrupt occurs, the Interrupt Handler issues the cjtktrigger call to AMX
identifying the task which it wishes to have executed.

This technique can be very useful for handling slowly occurring events. For example, a
device generates an interrupt and the Interrupt Handler responds by acquiring a block of
data from the device. The data is stored in memory by the Interrupt Handler for
subsequent use by a task. The Interrupt Handler then starts the task with the
cjtktrigger call. It is assumed that timing is such that the task will be able to
completely process the data prior to the next occurrence of a similar event. This
constraint is typical in many real-time system implementations.

Interrupt Service Procedures KADAK 49

4.5 Task Error Traps
Many processors automatically detect the occurrence of execution errors such as division
by zero, arithmetic overflow or array bound violation. These errors, by their very nature,
must be handled by the application in the context of the task in which they occur. The
detectable errors and the manner of detection is processor dependent. See the AMX
Target Guide for the processor of interest.

AMX offers tasks a convenient method of trapping such errors. For each task, AMX
maintains a pointer to a task trap handler for each detectable error.

Normally, when a task is running, AMX treats these errors as fatal if they occur. A task
can specify a trap handler for a particular error trap by calling AMX service procedure
cjksitrap. Thereafter, if the error occurs while running in the context of the task, the
task automatically branches to its trap handler.

Note that the actual processor error exception is completely serviced by AMX. The task
simply appears to have suddenly jumped to its trap handler.

AMX maintains unique trap handlers for each task. If a task is suspended and another
task executes, AMX selects the trap handlers for the new task. When the suspended task
resumes, its unique trap handlers are reinstated.

A task trap handler for a particular error trap is reset (cancelled) with a request to AMX
to set the pointer to CJ_NULLFN.

When a task is first created, AMX sets the task's trap handlers to CJ_NULLFN forcing
errors to be fatal until the task specifies its own trap handlers. Once a task defines its trap
handlers, they remain defined even if the task ends execution. If the task is subsequently
executed again, its previously defined trap handlers remain in effect unless altered by the
task.

If a trapped error exception occurs in a task with no trap handler or in a Restart
Procedure, an ISP or a Timer Procedure, AMX initiates a fatal exit as described in
Chapter 14.1.

50 KADAK Interrupt Service Procedures

The task trap handler can be written as a C procedure with formal parameters. Since the
errors are target specific, you must refer to the AMX Target Guide for the processor of
interest to determine how the task trap handler must be coded.

Since the task trap handler executes in the context of the task, the task's stack must
account for the stack used by the handler. An additional sizeof(struct cjxregs)
bytes of stack is required to accommodate the processor dependent stack frame generated
by AMX prior to its call to the trap handler.

In general, AMX provides the address of the fault and the state of each processor register
at the time of the fault.

The register values can be examined and modified with care. If necessary, the fault
pointer can be modified, with care, to force resumption at some other location in the task
code. If the trap handler returns to AMX, execution will resume at the location specified
by the fault pointer with registers set according to the values determined by the trap
handler.

Since the trap handler executes in the context of the task in which the error occurred, it is
free to use all AMX services normally available to tasks. In particular, the trap handler
can call cjtkend to end task execution if so desired.

Note

Task trap handlers are NOT Interrupt Handlers even though
on some processors the error is detected via a processor
interrupt or exception.

Interrupt Service Procedures KADAK 51

4.6 Non-Maskable Interrupt
Most processors provide a non-maskable interrupt (NMI). This interrupt cannot be
inhibited by software.

You have complete control over the non-maskable interrupt ISP. Usually, the NMI
interrupt is used to signal a catastrophic event such as a pending loss of power. The ISP
must process the interrupt in an application-dependent fashion, restore all registers and
return to the point of interruption if feasible. This ISP must assure that the interrupt
facility is restored according to its state at the time the non-maskable interrupt occurred.

The NMI ISP must be a nonconforming ISP. The NMI ISP cannot use AMX services.
Consequently the non-maskable interrupt cannot be used as an additional, general
purpose device interrupt.

Some hardware assisted debuggers may use the NMI interrupt to signal a breakpoint.

Warning

Because the occurrence of an NMI interrupt cannot be
controlled, the NMI interrupt can occur at any instant,
including within critical sections of AMX.

Consequently, the NMI ISP cannot call any AMX service
procedures.

52 KADAK Interrupt Service Procedures

4.7 Special Interrupts

Nonconforming Interrupts

In some systems there may be devices which generate interrupts requiring no
communication or synchronization with any task in the system. For example, a high-
speed scanner can interrupt the processor whenever new data readings are available. The
ISP reads the new data and stores it in memory for subsequent use by any module
requiring the information. These modules always use the most recently available value as
seen in memory. Interrupts such as this do not need to use AMX services. The ISP
simply saves the registers it requires for its own use, processes the interrupting device,
restores the registers and immediately returns to the point of interruption.

Since ISPs of this type use the stack in effect at the time of the interrupt, care must be
taken to assure that ALL stack sizes, including the AMX Interrupt Stack and Kernel
Stack, are increased to meet the needs of the special ISPs.

ISPs of this type are called nonconforming ISPs. You must arrange in hardware that all
such nonconforming interrupt sources are of higher priority than all conforming AMX
Interrupt Service Procedures. Note that the AMX clock ISP (see Chapter 5.2) is
considered to be a conforming ISP.

Occasional Task Interaction

In some applications, it may be desirable to bypass AMX for all but certain critical
interrupts. For example, in a communication system, normal receive interrupts simply
insert the received character into an already available input buffer. Transmit interrupts
simply transmit the next available character from an output buffer. These interrupts can
be serviced very quickly in a nonconforming ISP, bypassing AMX entirely.

However, when the receiver finally has a complete message or when the transmit buffer
goes empty, the device service procedure must send a message to a mailbox to inform a
related task that a significant event has occurred on the communication line.

The device service procedure must suddenly become a conforming AMX Interrupt
Service Procedure. It can do this by restoring all saved registers and calling a conforming
ISP root. The ISP root informs AMX that the interrupt has occurred and calls the
device's Interrupt Handler which can then send its message to the mailbox.

Note that if interrupts of this type are employed, all AMX and task stacks must meet the
requirements of the nonconforming device ISP.

Interrupt Service Procedures KADAK 53

Shared Interrupt Handlers

Occasionally a single Interrupt Handler can be used to service more than one identical
device. For example, an Interrupt Handler for an asynchronous serial I/O device (UART)
could be used to service the UART for each of several communication lines.

For the Interrupt Handler to be shared, the code must be reentrant. This usually implies
that the information unique to each UART (such as the device port address and line
status) must be in a data structure accessible by the handler.

A shared Interrupt Handler must therefore be able to determine which of several device
dependent data structures it should use to service a particular device interrupt. AMX
solves this problem by allowing an Interrupt Handler to receive a 32-bit, device
dependent parameter.

The following example illustrates how little application code must be written to create a
shared Interrupt Handler to handle two devices.

struct dvcblock {
int port; /* Device port */
int line; /* Logical line number */
:
Other dynamic device parameters
};

struct dvcblock dcbA = {0xF8, 1};
struct dvcblock dcbB = {0xE8, 2};

void CJ_CCPP deviceih(struct dvcblock *dcbp)
{

:
Service device specified by pointer dcbp
:
}

To add the device ISPs to your system, you edit your Target Parameter File to declare
that each of the two device ISPs uses the same Interrupt Handler deviceih. For each
device ISP, you provide the name of the unique, public, device dependent data structure
(dcbA or dcbB) to be used by the device Interrupt Handler. Then you use the AMX
Configuration Generator to convert your Target Parameter File to an AMX Target
Configuration Module as described in Chapter 16.

54 KADAK Interrupt Service Procedures

4.8 Fatal Exception Traps
Most processors detect critical faults which must be considered fatal in a real-time
multitasking system. These faults often include but are not limited to:

Bus error
Address error
Privilege violation

The action taken by the processor when a critical fault is detected varies among
processors. Most processors generate a unique type of interrupt called an exception or
trap. Within the AMX framework, all such faults are called exception traps.

Your AMX Target Parameter File identifies which, if any, of the processor's exception
traps are to be serviced by AMX. You can alter the Target Parameter File to suit your
needs as described in the processor specific AMX Target Guide.

All of the exception traps serviced by AMX are considered fatal. The processor saves
information which is dependent upon the processor type and the particular exception trap.
The processor then vectors to the AMX handler for the particular fault.

All AMX fatal exception trap handlers operate as follows. AMX creates a processor
dependent stack frame in which it identifies the type and location of the fault and the
processor register contents at the time of the fault. Details are provided in each AMX
Target Guide. AMX then takes its fatal exit at cjksfatal (see Chapter 14.1).

In general, there is little that can be done to recover from these fatal exception traps.
Your Fatal Exit Procedure might be able to externally display the information which is
provided for diagnostic purposes.

Interrupt Service Procedures KADAK 55

4.9 Vector Table Initialization
The manner in which the processor vectors to an Interrupt Service Procedure (ISP) is
processor dependent. Most processors use a dispatch table which, in AMX
nomenclature, is called a Vector Table. AMX maintains its own Vector Table if none is
provided by the processor.

The Vector Table may be located in RAM or ROM as dictated by your hardware
configuration. If the Vector Table is in RAM, it can be further characterized as alterable
or not. All of these characteristics are defined in your AMX Target Parameter File as
described in the processor specific AMX Target Guide.

Alterable Vector Table

The Vector Table must be initialized to provide dispatch access to all ISPs. If the Vector
Table is in RAM and is declared alterable, AMX services can be used to initialize the
Vector Table. Your application must initialize the Vector Table entry for each ISP root
defined in your AMX Target Parameter File. You can use the AMX target specific
procedure cjksivtwr or cjksidtwr during the AMX launch to install any ISP (including
an NMI ISP or other nonconforming ISPs) into the Vector Table entry of your choice.

For most processors, the Vector Table must also provide access to all exception trap
handlers. If the Vector Table is in RAM and is declared alterable, AMX will
automatically install its own exception trap handlers for the exceptions which AMX has
been configured to handle.

Unalterable Vector Table

Special consideration is required if the Vector Table is to be in ROM or is to be
unalterable by AMX in the target AMX system.

The Vector Table must be initialized when the ROM image is created. Pointers to all
ISPs (including conforming ISP roots, nonconforming ISPs and the NMI ISP) must be
installed in the ROM image.

In addition, AMX requires that the entries for all exception traps for which it is
responsible be initialized. The processor dependent list of AMX exception trap handlers
can be found in the processor specific AMX Target Guide.

If the Vector Table is in RAM but has been declared unalterable, the RAM copy of the
Vector Table must be initialized (as for a ROM image) before AMX is launched.

56 KADAK Interrupt Service Procedures

This page left blank intentionally.

AMX Timing Control KADAK 57

5. AMX Timing Control

5.1 Introduction to Timing Facilities
Most real-time systems are characterized by the need to provide precise control over the
timing of activities. A hardware clock provides the timing source; AMX provides the
control over its use.

The unit of time in an AMX system is the system tick which is a fixed interval derived
from the hardware clock. The system tick interval is user selectable. Typically, it is set
at 10 ms or 100 ms. The system tick interval is chosen to provide the minimum
resolution required in a particular application without inflicting unnecessary timing
overhead.

Task Delays and Timeouts

A task can suspend itself for a specific interval. A task can also wait for an event which
must occur within a specific interval. If the event fails to occur within the interval, the
task resumes execution with a timeout indication.

Interval Timers

Application interval timers are the most general form of timer provided by AMX. Once
such a timer has been created, it can be started, interrogated and stopped by any task or
Interrupt Service Procedure. When a timer is created, an application dependent Timer
Procedure must be provided. Whenever the timer expires, AMX executes this Timer
Procedure passing it a parameter which was specified when the timer was created.

Application timers can also be periodic. The timer period is specified when the timer is
created. AMX calls the corresponding Timer Procedure periodically at the defined
interval.

The following AMX procedures provide interval timer services:

cjtmbuild Create an interval timer (using a definition structure)
cjtmconvert Convert milliseconds to system ticks
cjtmcreate Create an interval timer (using inline parameters)
cjtmdelete Delete an interval timer
cjtmread Read an interval timer
cjtmtick Read absolute AMX tick counter
cjtmwrite Start/stop an interval timer

58 KADAK AMX Timing Control

Calendar Clock

The AMX Time/Date Manager provides Y2K compliant time of day calendar support if
required. The AMX calendar clock includes second, minute, hour, day, month, year and
day of the week. AMX services are provided to set and read the calendar clock. A
formatting procedure is also provided to translate the calendar time and date from the
internal format in which it is maintained by AMX into an ASCII string in several of the
most popular formats.

An application procedure can be tied to the calendar clock and called at one second
intervals to permit simple time of day event scheduling.

The following AMX procedures provide calendar clock services:

cjtdfmt Format calendar time/date as an ASCII string
cjtdget Read calendar time/date
cjtdset Set calendar time/date

Time Slicing

The AMX Timer Manager can provide time slicing if required. Time slicing is the
process whereby AMX can force tasks which have the same execution priority to share
the use of the processor on a round robin basis. The processing interval allocated to a
task is called its time slice. The time slice for each task can be uniquely defined
permitting fine tuning of the AMX time slice facility to meet each application's particular
needs.

The following AMX procedures provide time slicing services:

cjtmslice Change a task's time slice interval
cjtmtsopt Enable or disable time slicing

AMX Timing Control KADAK 59

5.2 AMX Clock Handler and Kernel Task
AMX includes a conforming clock ISP root, a Clock Handler and a Kernel Task to
provide timing facilities. Whenever a clock interrupt occurs, the clock ISP root calls your
application clock Interrupt Handler to dismiss the hardware clock interrupt. The ISP root
then calls the AMX Clock Handler to trigger the AMX Kernel Task if required. The
Kernel Task is triggered at the defined system tick interval if, and only if, there is any
outstanding timing activity required in the system. In this case, the interrupted task is
suspended and the AMX Kernel Task begins execution.

The AMX Kernel Task monitors all tasks which are in a timed wait state. The timer used
by AMX for task waits is maintained privately by AMX for each task. If the timer
expires, the Kernel Task removes the task from the wait state. The task is allowed to
resume execution when the Kernel Task ends with an indication that a timeout occurred.

The AMX Kernel Task also services all expiring application interval timers. Whenever
an interval timer expires, the corresponding Timer Procedure is executed. This procedure
can invoke a subset of the AMX services to trigger tasks, send messages to mailboxes or
message exchanges, signal events or wake tasks. If the timer is defined to be periodic,
the AMX Kernel Task automatically restarts it with its predefined period.

Once all expiring task timers and application interval timers have been serviced, the
AMX Kernel Task ends execution.

To install the AMX clock ISP, you edit the AMX Target Parameter File to include the
name of your clock Interrupt Handler. The AMX Configuration Generator is then used to
convert your Target Parameter File to an AMX Target Configuration Module with its
embedded AMX clock ISP root.

Your clock Interrupt Handler can be coded in either C or assembler. For efficiency,
assembler is recommended since most handlers require only one or two machine
instructions to dismiss the clock interrupt request.

You must also start your hardware clock at the correct frequency when AMX is launched.
You can do this in a Restart Procedure or in some task which is triggered at launch time.

Note

AMX is delivered to you with clock Interrupt Handlers
ready for use with one or more of the timing devices
commonly used with the target processor.

60 KADAK AMX Timing Control

5.3 Interval Timers and Timer Procedures
AMX supports any number of application interval timers in a system. The maximum
number in a system is defined in your System Configuration Module (see Chapter 15.4).

A timer must be created by an application before it can be used. Restart Procedures,
tasks, ISPs and Timer Procedures can create timers. It is recommended that only Restart
Procedures and tasks be used to create timers.

AMX procedure cjtmbuild or cjtmcreate is used to create a timer. AMX allocates a
timer and returns a timer id to the caller. The timer id is a handle which uniquely
identifies the particular timer allocated for use by the application. It is the responsibility
of the application to keep track of the timer id for future reference to the timer.

When a timer is created, you can provide a unique 4-character tag to identify the timer.
The tag can be used subsequently in a call to cjksfind to find the timer id allocated by
the Timer Manager to the particular timer.

When a timer is created, the caller must also specify the following parameters: the timer
period, a pointer to an application Timer Procedure and an optional 32-bit application
dependent parameter.

The timer period determines if the timer is periodic. If the timer period is zero, the timer
is a one-shot timer. Whenever a one-shot timer is started, it runs until it expires at which
time it remains idle until started again.

If the timer period is non-zero, the timer is periodic. The period specifies the timer's
period measured in AMX system ticks.

Whenever a timer expires, the AMX Kernel Task executes the Timer Procedure which
was provided when the timer was created. The Timer Procedure receives the timer id and
the predefined 32-bit application parameter as parameters.

When a timer is created, AMX sets the timer idle. The timer remains idle until it is
started by a Restart Procedure, task, ISP or Timer Procedure. Timers are started by
calling AMX procedure cjtmwrite to write the initial timer interval into the timer.

Timer intervals are measured in multiples of system ticks. For convenience, the AMX
procedure cjtmconvert can be used to convert a period specified in milliseconds to the
corresponding number of system ticks.

Timers are down-counters. When a timer expires, the AMX Kernel Task calls the timer's
Timer Procedure. One-shot timers remain expired unless they are restarted by their
Timer Procedure. Periodic timers are automatically restarted by the AMX Kernel Task
with their predefined timer period before the timer's Timer Procedure has been executed.

When an interval timer is no longer needed, it can be deleted with a call to cjtmdelete.

AMX Timing Control KADAK 61

The AMX service procedures which can be called from a Timer Procedure include the
following:

cjtktrigger Start (trigger) a task
cjtkwake Wake a task which is waiting

cjmbsend Send a message to a mailbox
Must not wait for acknowledgement

cjmxsend Send a message to a message exchange
Must not wait for acknowledgement

cjtmcreate Create an interval timer
cjtmdelete Delete an interval timer
cjtmread Read an interval timer
cjtmwrite Start/stop an interval timer
cjtmconvert Convert milliseconds to system ticks

cjsmsignal Signal to a semaphore
cjevsignal Signal one or more events in an event group

cjbmget Get a buffer from a specific buffer pool
cjbmfree Free a buffer

Circular List Manager services
Linked List Manager services

The following conditions exist when the Timer Procedure is called by the AMX Kernel
Task:

Interrupts are enabled.
All registers are free for use.
The AMX Kernel Stack is in use.

Timer Procedures are written as C procedures with formal parameters.

#include "CJZZZ.H" /* AMX Headers */

void CJ_CCPP truser(
CJ_ID timerid, /* Timer id */
struct userblock *userp) /* Pointer to user block */
{

:
Do timer expiry processing
:
}

Timerid is the timer id assigned by AMX to the interval timer when it was created.
Userp is the 32-bit application parameter provided when the timer was created. In this
example, it is assumed that userp is a pointer to an application structure of type
userblock.

62 KADAK AMX Timing Control

The Timer Procedure must execute with the interrupt facility enabled. If interrupts must
be temporarily disabled, they must be enabled prior to returning to the AMX Kernel
Task. A Timer Procedure must not issue any AMX directives which would in any way
force the Kernel Task to wait for any reason.

Note

Timer Procedures must only use AMX services which are
marked in Chapter 18 as
� Timer Procedure

Application Timer Procedures use the AMX Kernel Stack.

In addition to the minimum stack size required for the AMX Kernel Stack, you must
allocate sufficient stack to satisfy the worst case requirements of all application Timer
Procedures.

AMX Timing Control KADAK rev8 63

5.4 Task Time Slicing
AMX provides task time slicing as an option. The AMX system must be configured to
include a clock if time slicing is to be possible. Time slice intervals are then specified as
multiples of the AMX system tick.

Time slicing is normally disabled. It is enabled with a call to AMX procedure
cjtmtsopt(CJ_YES). It can be disabled again with a subsequent call to
cjtmtsopt(CJ_NO).

If your AMX System Configuration Module indicates that time slicing is required, AMX
will automatically enable time slicing by calling cjtmtsopt at launch time after
completing its own initialization, but prior to executing your application Restart
Procedures.

Time slicing is a feature which coexists with the normal AMX preemptive priority-based
task scheduling. Whether or not a task is time-sliced depends on two things: the task's
execution priority and the task's time slice interval. Both of these parameters are first
defined when a task is created.

If a task's time slice interval is zero, the task will not be time sliced. A non-zero time
slice interval specifies the number of AMX system ticks which will be given to the task
before the task is forced to relinquish the processor to another time sliced task.

A task is time sliced with all other tasks having the same execution priority and a non-
zero time slice interval. A set of time sliced tasks are normally created to share a
particular execution priority. Tasks which are not time sliced (their time slice interval is
zero) are usually assigned to different execution priority levels. More than one set of
time sliced tasks can be created, each set existing at a different priority level. Other tasks
can reside at priorities between the time sliced sets.

The order in which tasks at a particular shared priority level are given their time slice by
AMX is determined by the chronological order in which the tasks were created.

64 KADAK AMX Timing Control

Figure 5.4-1 illustrates the allocation of processing time to two tasks, B and C. Task B
was created first with a time slice interval of 100 AMX system ticks. Task C was created
later with a time slice interval of 50 AMX system ticks. At time t1, tasks B and C were
both triggered by a higher priority task A which then ended.

Since task B was created first, it executes first. Thereafter, in the absence of any other
higher priority task activity, the processor is shared by tasks B and C as illustrated.

Task C begins to execute at time t2 when task B's first 100 tick time slice expires. At
time t3, task B ends execution. The processor is immediately given to task C which
continues to execute without further interruption by task B.

┌────────┐ ┌────────┐ ┌──┐
│ 100 │ │ 100 │ │25│

Task B ──────┘ └────┘ └────┘ └────────────
┌────┐ ┌────┐ ┌────────────
│ 50 │ │ 50 │ │ >50

Task C ───────────────┘ └────────┘ └──┘
↑ ↑ ↑
t1 t2 t3

Figure 5.4-1 Simple Time Slicing

Figure 5.4-2 illustrates the effects to be expected if, while tasks B and C are being time
sliced, higher priority task A is invoked and executes to completion within 125 system
ticks.

┌──────────┐
│ 125 │

Task A ───────┘ └──────────────────────────────────
┌──┐ ┌──────┐ ┌────────┐ ┌──┐
│25│ │ 75 │ │ 100 │ │25│

Task B ────┘ └──────────┘ └────┘ └────┘ └─────
┌────┐ ┌────┐ ┌─────
│ 50 │ │ 50 │ │ >50

Task C ─────────────────────────┘ └────────┘ └──┘
↑ ↑ ↑
t1 t2 t3

Figure 5.4-2 Interrupted Time Slicing

AMX Timing Control KADAK 65

Time slicing can be completely disabled at any time with a call to AMX procedure
cjtmtsopt(CJ_NO). Procedure cjtmtsopt(CJ_YES) can then be used to enable time
slicing.

Task time slice intervals can be dynamically adjusted using AMX procedure cjtmslice
to fine tune the shared use of the processor based on observed effects.

The starting and ending of time sliced tasks are not synchronized to the AMX clock.
However, switching between time sliced tasks will only occur at AMX system ticks
because the switch is initiated by the AMX Kernel Task.

It should be noted that if higher priority tasks frequently interrupt a time sliced task, the
exact processing time allocated to the task will not exactly equal n*t where n is the task's
time slice interval and t is the AMX system tick period. The task will be forced to
relinquish the processor after the n'th system tick which occurs while the task is
executing. However, because of higher priority task activity, the task did not get the use
of the processor for the entirety of each of its n system ticks.

Finally, if a task is time sliced and all other tasks at the same execution priority are idle or
blocked, a time slicing overhead penalty will still exist. The AMX Kernel Task will
continue to interrupt the task at its time slice interval, conclude that task switching is
unnecessary and resume execution of the interrupted task.

Suggestion

Do not use time slicing unless its use is warranted. Better
use of processor time results if tasks are allowed to run to
completion.

Misuse is abuse!

66 KADAK AMX Timing Control

5.5 Time/Date Manager
Most real-time systems require the maintenance of a calendar clock. The AMX
Time/Date Manager provides this facility.

The Y2K compliant calendar clock maintained by the Time/Date Manager includes
second, minute, hour, day, month and year. Leap year is accounted for. The day of the
week (Mon to Sun) is also maintained.

An application Scheduling Procedure can be connected to the calendar clock to provide
activity scheduling based on the time of day.

The Time/Date Manager includes a set of service procedures for use by application tasks,
Timer Procedures, Interrupt Service Procedures and Restart Procedures. These include:

cjtdget Get Time and Date
cjtdset Set Time and Date
cjtdfmt Format Time and Date as an ASCII string

Several conflicts always arise with the maintenance of time and date. These conflicts
arise when:

1) the clock is trying to update the time and date while
2) a task is trying to read the time and date and
3) another task is trying to set the time and date.

The conflicts are even more pronounced if separate calls are required to get both time and
date. The Time/Date Manager resolves these conflicts.

AMX Timing Control KADAK 67

Operation

The Time/Date Manager includes two components: an AMX Restart Procedure and a set
of service procedures.

If your AMX System Configuration Module enables the Time/Date option, AMX
automatically calls the Time/Date Restart Procedure during the launch prior to executing
any application Restart Procedure. The calendar clock is set to 00:00:00 Friday Jan
01/1993 (the distribution date of the Time/Date Manager).

The Time/Date Manager creates a periodic interval timer and starts it with a one second
period. At one second intervals thereafter, the AMX Kernel Task executes the Time/Date
Timer Procedure. The current time and date are updated by one second.

The Time/Date Manager employs an interlock mechanism to ensure that any race
between a task trying to set a new time and date and the Time/Date Timer Procedure
trying to update time and date is resolved. The task's new time and date have precedence.

This interlock mechanism also assures that any task trying to read the current time and
date does not get a partially updated (and hence erroneous) time and date.

Once the time and date have been updated, the Time/Date Timer Procedure calls an
application Scheduling Procedure if one has been provided. This procedure, called once
a second, is thus tied to the calendar clock and can be used to initiate activities which
must be time of day driven. A detailed description of this facility is provided later in this
chapter.

The Time/Date Timer Procedure ends once the application Scheduling Procedure (if any)
has been executed.

Time/Date Structure

The Time/Date Manager provides time and date in the following form. Structure cjxtd
is defined in the AMX header file CJZZZSD.H as follows:

/* AMX Time/Date Structure */

struct cjxtd {

unsigned char xtdsec; /* seconds (0-59) */
unsigned char xtdmin; /* minutes (0-59) */
unsigned char xtdhr; /* hours (0-23) */
unsigned char xtdday; /* day (1-31) */
unsigned char xtdmonth; /* month (1-12) */
unsigned char xtdyear; /* year (0-99) */
unsigned char xtdow; /* day of week (Mon=1 to Sun=7) */
unsigned char xtdcen; /* 0 if time/date is incorrect */

/* century if time/date is */
/* correct */

CJ_ID xtdid; /* Time/Date timer id */
};

68 rev8 KADAK AMX Timing Control

Time/Date Validity

The century is used as follows. At startup, the Time/Date Restart Procedure resets the
century to 0 to indicate that the initial default time and date are incorrect. Note that the
initial time and date are valid; they are just not correct. At some later time, an application
program can issue a call to the Time/Date service procedure cjtdset to set a correct time
and date. The century specified as a parameter in that call should be set indicating that
the time and date parameters are correct.

The century can be reset to 0 by an application program with a cjtdset call to indicate
that the time and date are incorrect.

When setting the time and date, the day of the week does not have to be provided as long
as the year is beyond 1800. The Time/Date Manager will figure it out and set it
accordingly.

Time/Date Scheduling

Many real-time systems require that certain activities be performed at specific times of
day. For instance, it may be required that every day at 8:00 a.m. a 24 hour report be
generated. Or maybe every 1/2 hour, measured from the hour, the system must make a
measurement and display the result. The Time/Date Manager provides the mechanism
necessary to implement such features.

At one second intervals the Time/Date Timer Procedure updates the time and date and
then calls an application Scheduling Procedure. The name of this procedure must be
provided in your System Configuration Module (see Chapter 15.8).

Your Scheduling Procedure is called with a pointer to a Time/Date structure as a
parameter. The structure specifies the time and date at the instant the procedure is called.

The Scheduling Procedure is application dependent. It executes as part of the Time/Date
Timer Procedure. It must therefore not be compute or I/O bound.

In general, the procedure checks the time (and date if necessary) and determines if some
application dependent action must be initiated at that instant. If action is required, the
procedure either performs the action directly or requests AMX to start some other task
which is responsible for taking the required action.

You must be sure to allocate sufficient stack to the AMX Kernel Task to accommodate
the needs of the Scheduling Procedure.

AMX Timing Control KADAK 69

The following conditions exist when your Time/Date Scheduling Procedure is called by
the Time/Date Manager

Interrupts are enabled.
All registers are free for use.
The AMX Kernel Stack is in use.

The Scheduling Procedure is written as a C procedure as follows:

#include "CJZZZ.H" /* AMX Headers */

void CJ_CCPP tdshed(struct cjxtd *tdp)
{

:
Perform required tests and initiate
actions if it is time for them
:
}

70 KADAK AMX Timing Control

Time/Date ASCII Formats

The Time/Date Manager procedure cjtdfmt can be used to format time and date into an
ASCII character string in any of several popular formats. The time and date is presented
to cjtdfmt in the standard AMX time/date structure. The ASCII string is returned in a
character buffer provided by the caller. See Chapter 18 for the cjtdfmt calling sequence.

Time can be formatted as either of:

HH:MMb
HH:MM:SSb

where: HH = hours (00 to 23)
MM = minutes (00 to 59)
SS = seconds (00 to 59)
b = space time/date are correct (century <> 0)
b = # time/date are incorrect (century = 0)

The date can be formatted as any of:

DDD MMM dd/ccyyb
DDD mm/dd/ccyyb
DDD dd MMM/ccyyb
DDD dd/mm/ccyyb
DDD ccyy/mm/ddb

where: DDD = day of week (Mon to Sun)
MMM = month (Jan to Dec)
mm = month (01 to 12)
dd = day (01 to 31)
cc = century (19, 20, ...)
yy = year (00 to 99)
b = space

The 4 character day-of-week (DDDb) and/or the two character century (cc)
can be omitted.

The format of time and/or date is specified by a format specification parameter, a single
byte presented to procedure cjtdfmt.

AMX Timing Control KADAK 71

Figure 5.5-1 describes the format specification byte and the effect of each bit in it on the
formatting of the time and date.

7 6 5 4 3 2 1 0

TD1 TD0 C M S W D1 D0

TD1 TD0 Time/Date selection

0 0 time followed by date 23:59:59 Sun Jan 31/93
0 1 time only 23:59:59
1 0 date only Sun Jan 31/93
1 1 date followed by time Sun Jan 31/93 23:59:59

S = 0 display seconds 23:59:59
S = 1 suppress seconds 23:59

W = 0 suppress day of week 23:59:59 Jan 31/93
W = 1 display day of week 23:59:59 Sun Jan 31/93

M D1 D0 Date format

0 0 0 American alphanumeric form Jan 31/93
0 0 1 American numeric form 01/31/93
0 1 0 European alphanumeric form 31 Jan/93
0 1 1 European numeric form 31/01/93
1 0 0 Metric form 93/01/31

C = 0 suppress century Jan 31/93
C = 1 include century Jan 31/1993

Figure 5.5-1 Time/Date Format Specification Parameter

72 KADAK AMX Timing Control

This page left blank intentionally.

AMX Semaphore Manager KADAK rev9 73

6. AMX Semaphore Manager

6.1 Introduction
E.W. Dijkstra introduced two primitive operations to resolve two seemingly unrelated
problems: mutually exclusive access by tasks to critical resources and the
synchronization of asynchronously occurring activities.

The abstract primitives, called P and V operators, operate on a variable called a
semaphore. Many variations of these P and V operators have been implemented since
their first introduction. The AMX Semaphore Manager provides two variations: a
counting semaphore which has been enhanced to provide priority queuing and automatic
timeout, and a resource semaphore in which resource ownership is tied to a specific task.

A counting semaphore is a semaphore with an associated counter which is incremented
by the P operator (signal) and decremented by the V operator (wait). The item controlled
by the semaphore is free (available) when the counter is greater than 0. The upper limit
for a counting semaphore is fixed at 16383. A counting semaphore is best used to signal
events without losing count of the events.

A bounded semaphore is a counting semaphore with a fixed upper limit between 1 and
16383. It can be used to control access to a specific number of items. The number of
items controlled by the semaphore is determined by the maximum value the counter is
allowed to achieve.

A binary semaphore is a bounded semaphore with an upper limit of one. It can be used
to provide mutually exclusive access to a single item or to signal one particular event.

A basic resource semaphore is a binary semaphore which can only be used for resource
ownership control. It differs from a pure binary semaphore in one significant feature:
resource ownership is tied to a specific task. No other task except the task owning the
resource is allowed to signal the release of the resource.

A priority inheritance resource semaphore is a variation of a basic resource semaphore
which can be used to avoid the ever present danger of task priority inversion. This well
documented phenomenon will occur if a high priority task is forced to wait for a long
time for a resource owned by a low priority task which is prevented from running by
intervening medium priority tasks. The inversion is prohibited by the Semaphore
Manager which hoists the task owning the resource to a priority immediately above that
of the high priority task demanding access to the resource. Once the resource is released,
ownership is granted to the high priority task which resumes execution immediately.
Eventually, the original owner is allowed to resume execution at its original priority.

The semaphores provided by the Semaphore Manager have been enhanced to provide
priority queuing and automatic timeout. Tasks which wait on semaphores can specify the
priority at which they wish to wait for the resource or event controlled by the semaphore.
Tasks can also specify the maximum interval which they are prepared to wait.

74 rev9 KADAK AMX Semaphore Manager

The AMX Semaphore Manager provides the following semaphore management services:

cjrmbuild Create a resource semaphore (using a definition structure)
cjrmcreate Create a basic resource semaphore (using inline parameters)
cjrmcreatex Create a basic or priority inheritance resource semaphore
cjrmdelete Delete a resource semaphore
cjrmfree Free a resource semaphore (unconditional)
cjrmrls Release a resource semaphore (nested)
cjrmrsv Reserve a resource semaphore (optional timeout)
cjrmstatus Read status of a resource semaphore

cjsmbuild Create a counting/bounded semaphore (using a definition structure)
cjsmcreate Create a counting/bounded semaphore (using inline parameters)
cjsmdelete Delete a counting/bounded semaphore
cjsmsignal Signal to a counting/bounded semaphore
cjsmstatus Read status of a counting/bounded semaphore
cjsmwait Wait on a counting/bounded semaphore (optional timeout)

Your use of the Semaphore Manager is optional. If you intend to use it, you must
indicate so in your System Configuration Module. You must also provide a hardware
clock and include the AMX timing facilities.

Semaphores can be predefined in your System Configuration Module which is processed
by the Semaphore Manager at startup. Semaphores which are predefined are
automatically created by the Semaphore Manager. The semaphore id assigned to each
predefined semaphore is stored in a variable which you must provide for that purpose.

AMX Semaphore Manager KADAK rev9 75

6.2 Semaphore Use
The Semaphore Manager supports any number of semaphores. The maximum number of
semaphores in a system is defined in your System Configuration Module (see Chapter
15.8). The defined maximum sets an upper limit on the number of actual semaphores
that can be created in your application.

A semaphore must be created by an application before it can be used. Restart
Procedures, tasks, ISPs and Timer Procedures can create semaphores. It is recommended
that only Restart Procedures and tasks be used to create semaphores.

A counting semaphore is created with a call to procedure cjsmbuild or cjsmcreate. A
resource semaphore is created with a call to procedure cjrmbuild, cjrmcreate or
cjrmcreatex. The Semaphore Manager allocates a semaphore and returns a semaphore
id to the caller. The semaphore id is a handle which uniquely identifies the semaphore.
It is the responsibility of the application to keep track of the semaphore id for future
reference to the semaphore.

When a semaphore is created, you can provide a unique 4-character tag to identify the
semaphore. The tag can be used subsequently in a call to cjksfind to find the
semaphore id allocated by the Semaphore Manager to the particular semaphore.

At any time, the status of a counting semaphore can be read using cjsmstatus to
determine if an item is available or if tasks are waiting for an item.

At any time, the status of a resource semaphore can be read using cjrmstatus to
determine if a resource is available or if tasks are waiting to use the resource.

When a semaphore is no longer needed, it can be deleted with a call to cjrmdelete or
cjsmdelete. The Semaphore Manager will reject the attempt to delete the semaphore if
any task is waiting for the use of the semaphore. When the Semaphore Manager deletes a
semaphore, it marks the semaphore as invalid such that any subsequent reference to the
semaphore will be rejected.

You must be absolutely certain that no task, ISP or Timer Procedure is referencing the
semaphore just as you go to delete it. Be aware that the deleted semaphore id may
immediately be reused by AMX for some other purpose.

76 rev9 KADAK AMX Semaphore Manager

Counting, Bounded and Binary Semaphores

A counting semaphore is created with a call to cjsmbuild or cjsmcreate in which the
initial value of the semaphore count must be specified. The initial value must lie in the
range 0 to 16383. The upper limit for a counting semaphore's count is fixed at 16383.

A bounded semaphore is created with a call to cjsmbuild or cjsmcreate in which the
upper limit of the semaphore count must be specified. The upper limit must lie in the
range 1 to 16383. The bounded semaphore's initial count is set to 0.

A binary semaphore is created with a call to cjsmbuild or cjsmcreate in which the
semaphore is declared to be binary. The binary semaphore's initial count is set to 0 and
its upper limit is set to 1. There is no difference between a binary semaphore and a
bounded semaphore with an upper limit of 1. Use a binary semaphore for mutual
exclusion.

If a semaphore is initialized with a semaphore value of n, it can be used to control access
to n items of a particular type. For instance, a bounded semaphore could be used to
control access to three printers in a system. The bounded semaphore would have to be
signaled three times to set its count to three to indicate that the three printers are
available. When used in this fashion, the Semaphore Manager assures that no more than
three tasks can own a printer at any one time. However, the Semaphore Manager does
not provide any guidance as to which of the three available printers a task can use.

Access to the item controlled by a counting or bounded semaphore is acquired with a call
to procedure cjsmwait. Only tasks are allowed to call this procedure and wait for the
item to become available. When requesting use of an item, the task specifies the interval,
measured in system ticks, which it is willing to wait for the item if it is unavailable at the
time of the call. The task also specifies the priority at which it is prepared to wait, zero
being the highest priority.

If the item controlled by the semaphore is available, the Semaphore Manager gives it to
the calling task immediately. If the item is unavailable, the Semaphore Manager will add
the task to the semaphore's wait queue at the priority it said it was willing to wait. Thus
tasks which require high priority access to the item can preempt lower priority waiting
tasks in the wait queue.

When the task is finished using the item, it signals its release by calling procedure
cjsmsignal. The Semaphore Manager releases the item and checks the semaphore's
wait queue. If any tasks are waiting on the queue, the item is immediately given to the
task at the head of the wait queue. If that task is of higher priority than the task which is
releasing the item, a task switch will occur giving the higher priority task an immediate
opportunity to use the item. If the task being granted use of the item is of lower priority
than the task which is releasing it, the new owner will have to wait until the currently
executing task relinquishes control of the processor.

If the semaphore does not become available within the timeout interval specified by the
task, the task will be removed from the semaphore wait queue and will resume execution
with a timeout indication.

Tasks, ISPs or Timer Procedures which need to use an item but which cannot wait for the
item to be free can still call cjsmwait. However, they must specify a timeout value of
less than zero so that they will not wait on the semaphore queue. If the item cannot be
immediately granted to the caller, cjsmwait returns an error indication.

AMX Semaphore Manager KADAK rev9 77

Basic Resource Semaphore

The AMX basic resource semaphore provides the simplest mechanism for controlling
access to critical resources. Resources may include disk files, I/O devices, database
components, regions of memory, specific words of memory or any other entity which is
considered to be a resource.

An application task requests ownership of a resource with a call to the Semaphore
Manager. If the resource is available, the task is granted immediate ownership of it. If
the resource is unavailable, the task is inserted on a list of tasks waiting for the resource
at a wait priority specified by the task. The task can optionally specify the maximum
time interval it is prepared to wait for access. When the task which currently owns the
resource releases it with a call to the Semaphore Manager, the resource will be given to
the task with the highest waiting priority.

Although a basic resource semaphore uses a binary semaphore for controlling access to
the resource, it differs from the general bounded (binary) semaphore provided by the
AMX Semaphore Manager in one significant feature. Resource ownership is tied to a
specific task. Only the task owning such a resource is permitted to signal its release. The
Semaphore Manager does not permit more than one task to share ownership of such a
resource.

A basic resource semaphore is created by a call to cjrmbuild or cjrmcreate. The
Semaphore Manager creates a resource semaphore and automatically gives it an initial
value of one indicating that the resource is free.

A resource is reserved by calling procedure cjrmrsv using the semaphore id allocated to
the particular resource semaphore when it was created. Only tasks can reserve a resource
controlled by a resource semaphore. The task which owns the resource can reserve it
again and again, resulting in a nested reservation.

When requesting use of a resource, the task specifies the interval, measured in system
ticks, which it is willing to wait for the resource if the resource is unavailable at the time
of the call. The task also specifies the priority at which it is prepared to wait, zero being
the highest priority.

The resource is released with a call to cjrmrls. The task which owns the resource must
release the resource once for each nested reserve that it has made. The resource becomes
free when the nesting count reaches zero. Alternatively, the resource can be released
unconditionally with a call to cjrmfree.

If the resource is in use when cjrmrsv is called, the task will be added to the semaphore's
wait queue forcing the task to wait at the priority specified by the task in its call to
reserve the resource. When the current owner of the resource releases it, the Semaphore
Manager gives the resource to the task (if any) waiting at the head of the resource
semaphore queue. Hence, a task must wait until all other tasks ahead of it in the queue
use and release the resource.

If the task is of higher priority than the task which is releasing the resource, a task switch
will occur giving the higher priority task an immediate opportunity to use the resource. If
the task being granted use of the resource is of lower priority than the task which is
releasing it, the new owner will have to wait until the currently executing task
relinquishes control of the processor.

78 rev9 KADAK AMX Semaphore Manager

If the resource does not become available within the timeout interval specified by the
task, the task will be removed from the resource semaphore wait queue and will resume
execution with a timeout indication.

Tasks which need to use a resource but which cannot wait for the resource to be free can
still call cjrmrsv. However, they must specify a timeout value of less than zero so that
they will not wait on the resource semaphore queue. If the resource cannot be
immediately granted to the caller, cjrmrsv returns an error indication.

Priority Inheritance Resource Semaphore

The priority inheritance resource semaphore is a basic resource semaphore which is
enhanced to use priority inheritance to prevent task priority inversions. Such a
semaphore is created by a call to cjrmbuild or cjrmcreatex in which the semaphore is
declared to support priority inheritance.

The semaphore operates like a basic resource semaphore with one significant difference:
a high priority task is never permitted to block (be suspended), waiting for the use of such
a resource. Instead, the task owning the resource is hoisted to a priority immediately
above that of the task requiring the resource so that it can continue to execute until it
releases the resource. Ownership is immediately granted to the high priority task and the
prior owner is forced to wait until it can resume execution at its original priority.

A task which owns a priority inheritance resource is not permitted to block for any
reason. The task will receive an error code from any AMX procedure which would have
to suspend the task. For example, the task cannot delay, wait for a wake request or wait
on a buffer pool, an event group, a mailbox or a message exchange. The task cannot send
a message and wait for acknowledgement of its receipt.

A task which owns a priority inheritance resource can wait for another resource of the
same type. However, it cannot wait for a counting, bounded or binary semaphore or for a
basic resource semaphore.

The Semaphore Manager uses the AMX task suspension and priority adjustment services
to control the execution of tasks competing for a priority inheritance resource.
Consequently, your application must avoid calls to cjtksuspend, cjtkpriority or
cjtkpradjust to suspend any task or alter the priority of any task which manipulates
priority inheritance resources.

A task can own more than one priority inheritance resource. It is recommended that, if
possible, resources should be released in the opposite order to which they were reserved.
To avoid deadlock, all tasks which compete for such resources should reserve the
resources in the same order. It is also recommended that each task execute at its own
distinct priority level.

Tasks which use priority inheritance resources should not be time sliced. Once a time
sliced task has been hoisted in priority to resolve a request for a resource that it owns, the
task will not be sliced out until it releases the resource. At that time it will be suspended
as though its time slice had just expired. The task will eventually resume execution at its
original priority with a full time slice when its next turn to execute at that priority arises.

AMX Semaphore Manager KADAK rev9 79

6.3 Semaphore Applications

Mutual Exclusion

Assume that three tasks, A, B and C, require shared access to a common data structure
being used to control some process. Access to the data structure must be mutually
exclusive so that one task cannot be modifying the data in the structure while another task
is accessing it.

A binary semaphore is required because there is only one data structure to manage. The
initial count must be one to indicate that the data structure is free for use. A binary
semaphore is created in a Restart Procedure. The semaphore count is set to one by
signaling the semaphore. One task can own the resource; two tasks can be waiting. Note
that the Semaphore Manager does not guarantee that only tasks A, B and C can access the
data structure.

In this example, Task A waits indefinitely (timeout value = 0) at priority level 20 for
access to the data variable. Task B waits indefinitely at priority level 10. Task C only
waits for 100 system ticks at priority 5 before it assumes that it cannot have access.

This example is illustrated on the next page. The manner in which Tasks A, B and C are
created and started is beyond the scope of this example.

Parameters 1 and 2 in the data structure are modified by the tasks to illustrate that their
alteration by one task is guaranteed by the semaphore to be completed before access by
either of the other two tasks is allowed.

For simplicity, the Restart Procedure does not check the error code returned by
cjsmcreate or cjsmsignal. In practice, error codes should never be ignored.

80 rev9 KADAK AMX Semaphore Manager

#include "CJZZZ.H" /* AMX Headers */

static CJ_ID daccess; /* Data access semaphore id */

static struct {
int dbpar1; /* Parameter 1 */
int dbpar2; /* Parameter 2 */
:
:
} datavar; /* Data variable */

void CJ_CCPP rruser(void) /* Restart Procedure */
{

/* Create binary semaphore; set count to 1 to allow data access */
cjsmcreate(&daccess, "DACS", CJ_SMBINARY);
cjsmsignal(daccess);
}

void CJ_CCPP sttaskA(void) /* Task A */
{

/* Wait for access; priority 20 forever */

if (cjsmwait(daccess, 20, 0) == CJ_EROK) {
datavar.dbpar1 = 1; /* Set parameters */
datavar.dbpar2 = 1;
cjsmsignal(daccess); /* Allow access by others */
}

}

void CJ_CCPP sttaskB(void) /* Task B */
{

/* Wait for access; priority 10 forever */

if (cjsmwait(daccess, 10, 0) == CJ_EROK) {
datavar.dbpar1 = 2; /* Set parameters */
datavar.dbpar2 = 2;
cjsmsignal(daccess); /* Allow access by others */
}

}

void CJ_CCPP sttaskC(void) /* Task C */
{

/* Wait for access; priority 5; 100 ticks*/

if (cjsmwait(daccess, 5, 100) == CJ_EROK) {
datavar.dbpar1 = 3; /* Set parameters */
datavar.dbpar2 = 3;
cjsmsignal(daccess); /* Allow access by others */
}

}

AMX Semaphore Manager KADAK rev9 81

Task/Event Synchronization

A counting semaphore can be used to provide synchronization between a task waiting for
an event and a task, ISP or Timer Procedure in which the event is detected. The
following example assumes that a device ISP detects the event.

A task creates a counting semaphore with an initial count of zero.

The task then starts the device and waits on the semaphore. When the event of interest is
detected by the ISP, it signals to the semaphore. The Semaphore Manager grants access
to the waiting task which then resumes execution knowing that the event occurred.

For simplicity, the task and ISP do not check the error code returned by cjsmcreate,
cjsmdelete or cjsmsignal. In practice, error codes should never be ignored.

#include "CJZZZ.H" /* AMX Headers */

static CJ_ID syncisp; /* ISP synchronization */
/* semaphore id */

void CJ_CCPP sttask(void)
{

int status;

/* Create counting semaphore*/
cjsmcreate(&syncisp, "SISP", CJ_SMCOUNT(0));
:
Start device I/O
:

/* Wait 1 second for event */
status = cjsmwait(syncisp, 0, cjtmconvert(1000));

if (status == CJ_EROK) { /* OK? */
:
Event occurred within 1 second
:
}

else if (status == CJ_WRTMOUT) { /* Timeout? */
:
Event did not occur within 1 second
:
}

else { /* Fatal error */
:
No such semaphore exists (who deleted it?)
:
}

cjsmdelete(syncisp); /* Delete semaphore */
}

82 rev9 KADAK AMX Semaphore Manager

void CJ_CCPP isphand(void) /* Interrupt Handler */
{

Dismiss interrupt request
:
cjsmsignal(syncisp); /* Signal to semaphore */
}

In this example, we have assumed that the AMX Target Configuration Module includes
an ISP root for the device with procedure isphand declared as the Interrupt Handler.

Resource Nesting

Assume that two tasks, A and B, have to share a numeric coprocessor. Furthermore,
these two tasks also must share a common library procedure ncmath which must use the
coprocessor.

A resource semaphore must be used because ownership of the numeric coprocessor must
be tied to one task at a time and the owner must be allowed to make nested resource
reservation calls.

In the example, Task A waits indefinitely (timeout value = 0) at priority level 20 for the
use of the numeric coprocessor. Once the task owns the coprocessor, it initializes it and
calls ncmath to perform some mathematical operation using it. Task A then finishes
using the coprocessor and releases it.

Task B does not use the coprocessor directly. It calls ncmath to perform a mathematical
operation which requires the use of the coprocessor.

The math library procedure waits forever at priority 20 to reserve the coprocessor without
knowing which task is calling. If ncmath is called by Task B while Task A owns the
coprocessor, Task B will be suspended by the Semaphore Manager until Task A is
finished with the coprocessor.

The manner in which Tasks A and B are created and started is beyond the scope of this
example.

For simplicity, Tasks A and B do not check the error code returned by ncmath or by the
Semaphore Manager. In practice, error codes should never be ignored.

AMX Semaphore Manager KADAK rev9 83

#include "CJZZZ.H" /* AMX Headers */

static CJ_ID ncaccess; /* Coprocessor resource */
/* semaphore id */

void CJ_CCPP rruser(void)
{

cjrmcreate(&ncaccess, "MATH"); /* Create a basic */
/* resource semaphore */

}

CJ_ERRST CJ_CCPP ncmath(
CJ_ID ncid) /* Semaphore id */
{

int status;

status = cjrmrsv(ncid, 20, 0); /* Reserve coprocessor */
if (status == CJ_EROK) {

:
Use coprocessor and do math operation
:
status = cjrmrls(ncid); /* Release coprocessor */
}

return(status);
}

void CJ_CCPP sttaskA(void)
{

cjrmrsv(ncaccess, 20, 0); /* Reserve coprocessor */
:
Initialize coprocessor
:
ncmath(ncaccess); /* Common math operation */
cjrmrls(ncaccess); /* Release coprocessor */
:
}

void CJ_CCPP sttaskB(void)
{

:
ncmath(ncaccess); /* Common math operation */
:
}

84 rev9 KADAK AMX Semaphore Manager

6.4 Priority Inversion Avoidance

Priority Inheritance

The AMX Semaphore Manager provides a resource semaphore which uses priority
inheritance to avoid a task priority inversion. This type of semaphore was introduced in
Chapter 6.1 and described in Chapter 6.2. Although the elimination of potential priority
inversions is a laudable goal, there are still penalties and pitfalls that must be addressed.

Raising and lowering task priorities are time consuming operations. Hence, an execution
penalty is paid every time a high priority task requests use of a resource owned by a low
priority task. The penalty is sufficiently minimal that the gain is usually worth the cost.

However, if several tasks compete in complex ways for a number of different priority
inheritance resources, there can be a significant amount of thrashing as AMX raises and
lowers task priorities to resolve the conflicting demands. For example, consider three
tasks, A, B and C. Assume that low priority task C owns resources Ra and Rb. If task B
preempts task C and requests resource Rb, task C will be hoisted above task B. If task A
then preempts task C and requests resource Ra, task C will again be hoisted, this time
above task A. If task C releases resource Ra before releasing resource Rb, Ra will be
granted to task A and task A will run in preference to task C. When task A relinquishes
use of the processor, task B will run and repeat its demand for resource Rb which task C
still owns. Hence, task C will once more be moved to a priority just above task B. Note
that four task priority changes were required to avoid the potential priority inversions.

In this example, task B will remain preempted until task C releases Ra or Rb. If task B
specified a timeout in its request for the resource, the timeout interval may have expired
before task B resumes. When task B resumes, if resource Rb is not available and a
timeout occurred, task B will receive a warning that it timed out waiting for Rb. If
resource Rb is available but a timeout occurred, task B will receive a warning that it
missed its deadline. In this case, task B will not be granted the resource even though it
was available when the timeout was finally observed.

To avoid an endless thrashing sequence with little chance for recovery, the Semaphore
Manager aborts a task's request for a resource if the resource owner is hoisted many,
many times and still does not release the resource. You can adjust the magic number to
force an earlier abort by following the procedure described in Appendix D.2.

If you wish, you can reduce the AMX code footprint by eliminating AMX support for
priority inheritance resources as described in Appendix D.2.

Priority Ceiling

One well defined method for avoiding priority inversion is to establish a priority ceiling
for a resource. Any task wishing to use the resource must first raise its priority to the
defined ceiling for that resource. The task can then use the resource and, when finished,
restore its original priority.

The AMX Semaphore Manager does not provide a resource semaphore with a priority
ceiling. However, any task can use AMX task priority adjustment services to manipulate
its priority to implement a priority ceiling for a resource, with no semaphore needed.

AMX Event Manager KADAK 85

7. AMX Event Manager

7.1 Introduction
The AMX Event Manager provides the most general form of event synchronization
offered by AMX. The Event Manager provides a convenient mechanism for separating
the tasks waiting for events from the tasks, Timer Procedures and Interrupt Service
Procedures which can signal the event. The Event Manager also allows more than one
task to simultaneously wait for a particular event. Tasks can wait for a particular
combination of events or for any one of a set of events to occur.

The Event Manager provides a set of event flags which can be associated with specific
events in your system. These event flags are provided in groups with 16 or 32 event flags
per group. The number of event flags per group is dictated by the basic register width
(integer size) of the target processor.

As an example, suppose that two tasks, A and B, must each wait until a motor turns on.
Assume that an interrupt will occur when the motor is turned on.

It is assumed that Tasks A and B are completely independent; their processing is
unrelated. One method of accomplishing the necessary synchronization is for both tasks
to set software flags indicating that they are waiting for the motor and then call AMX
procedure cjtkwait to wait for the motor to turn on. When the motor control ISP detects
that the motor has started, it could check the wait flags for the two tasks and wake the
tasks if necessary with calls to cjtkwake.

This solution does not provide good functional separation between processes. The motor
control ISP must be aware that Tasks A and B are waiting for the motor to turn on. As
you can imagine, this lack of functional separation is compounded when there are many
types of events occurring in a system.

The Event Manager provides a more general solution to this problem. An event flag is
defined to represent the state of the motor (off or on). A Restart Procedure initializes the
event flag so that it matches the actual state of the motor. When Tasks A and B must
wait for the motor, they do so by calling the Event Manager requesting to wait until the
motor control event flag indicates that the motor is on. When the motor control ISP
detects that the motor is on, it signals the event with a call to the Event Manager. The
Event Manager wakes all tasks, including Tasks A and B, which are waiting for the
motor to be on.

86 KADAK AMX Event Manager

The AMX Event Manager provides the following event management services:

cjevbuild Create an event group (using a definition structure)
cjevcreate Create an event group (using inline parameters)
cjevdelete Delete an event group
cjevread Read current state of events in a group
cjevsignal Signal one or more events in a group
cjevstatus Get current status of an event group
cjevwait Wait for all/any of a set of events in a group

(optional timeout)
cjevwaits Get state of events at completion of event wait

Your use of the Event Manager is optional. If you intend to use it you must indicate so in
your System Configuration Module. You must also provide a hardware clock and
include the AMX timing facilities.

Event groups can be predefined in your System Configuration Module which is processed
by the Event Manager at startup. Event groups which are predefined are automatically
created by the Event Manager. The event group id assigned to each predefined event
group is stored in a variable which you must provide for that purpose.

AMX Event Manager KADAK 87

7.2 Event Synchronization
The AMX Event Manager supports any number of event groups in a system. Each event
group includes 16 or 32 event flags. The maximum number of event groups in a system
is defined in your System Configuration Module (see Chapter 15.8). The defined
maximum sets an upper limit on the number of actual event groups that are available
through the Event Manager in your application.

Each event in a group is represented by a boolean flag representing the state of the event.
The event flags are represented in one 16 or 32-bit variable. It is recommended that the
boolean states 0 and 1 be used as false and true indicators respectively. The zero state
therefore represents no event. The one state indicates that the event has occurred.

Two types of event flags are supported: state driven or pulsed. State driven events are
most useful for monitoring the state or condition of something in which the state is
determined by one, and only one, piece of application code. The state of a motor is a
good example.

Pulsed events are most useful to signal fleeting or rapidly changing conditions. Pulsed
events free the designer from having to worry about who resets the event flag: the
signaller or some signal waiter. An example might be a motor's speed rising above some
upper limit.

State driven and pulsed events can coexist in the same event group. It is the event
signaller which determines whether the events being signalled require a state change or a
momentary change.

An event group must be created by an application before it can be used. Restart
Procedures, tasks, ISPs and Timer Procedures can create event groups. It is
recommended that only Restart Procedures and tasks be used for this purpose.

Event Manager procedure cjevbuild or cjevcreate is used to create an event group.
The Event Manager allocates an event group and returns a group id to the caller. The
group id is a handle which uniquely identifies the particular event group allocated for use
by the application. It is the responsibility of the application to keep track of the group id
for future reference to the event group.

When an event group is created, you can provide a unique 4-character tag to identify the
event group. The tag can be used subsequently in a call to cjksfind to find the event
group id allocated by the Event Manager to the particular event group.

When an event group is created, the caller specifies the initial state that each of the event
flags in the group is to assume. Hence, the process of creating a group automatically
initializes all events in the group to a predefined state. The assignment of events to
specific event flags in the event group is completely determined by the system designer.

Once an event group has been created, it can be used to synchronize tasks to any of the
events which it represents. A task can wait for an event by calling procedure cjevwait.
Only tasks can wait for events. If a task wishes to wait for more than one event, all of the
events must be contained in the one event group specified by the task in its call to
cjevwait.

88 KADAK AMX Event Manager

When the task calls cjevwait to wait for an event, it specifies the group id of the event
group containing the events of interest. It provides a 16 or 32-bit mask identifying which
of the events are of interest and a 16 or 32-bit value indicating the particular state of
interest for each of the selected events. The task also specifies one of two types of match
criterion to be used for event detection. Tasks can wait for any one of the selected events
in the group to achieve its specified state. Alternatively, the task can insist that all of the
selected events must exactly match their specified state before an event match can be
declared.

Finally, the task calling cjevwait must also specify the interval, measured in system
ticks, which it is prepared to wait for the event match to occur. Upon return from
cjevwait, the task receives status indicating whether an event match occurred within the
expected time interval. Note that a task will not be forced to wait if the state of the event
flags meets the task's match criterion at the time of the call.

Events are signalled by tasks, ISPs and Timer Procedures. The event is signalled with a
call to procedure cjevsignal. The caller specifies the group id of the event group which
contains the particular event. More than one event can be signalled in a single call to
cjevsignal. The caller specifies a 16 or 32-bit mask identifying the particular event
flags in the group and a 16 or 32-bit value which specifies the new state of each of these
selected event flags.

The type of event is specified in the call to cjevsignal. Both state changes and pulsed
events force the selected event flags to the state specified by the caller. If the events are
pulsed, the selected event flags are then immediately reset to zero resulting in a
momentary state change.

Whenever an event is signalled, the Event Manager determines if any tasks are waiting
for any of the events in the particular group. If tasks are waiting on the group, the Event
Manager checks the new state of the event flags to see if the event match criterion of any
of the waiting tasks has been achieved. Whenever an event match is detected, the Event
Manager wakes the task whose match criterion has been met. Providing that no tasks of
higher priority are executing, the task will resume execution with an indication that the
event combination for which it was waiting has occurred.

If a task needs to know the exact state of the event flags at the time its event match
occurred or timed out, it can issue a call to the Event Manager procedure cjevwaits.

A task, ISP or Timer Procedure can determine the current state of the event flags at any
instant with a call to cjevread. Alternatively, procedure cjevstatus can be used to
fetch the event group status including the current event flags and a count of the tasks, if
any, waiting on the group.

If an event group is no longer required, the group can be deleted with a call to the Event
Manager procedure cjevdelete. The Event Manager will free the event group for reuse.
The Event Manager will not allow you to delete an event group which has one or more
tasks still waiting for events in the group.

You must be absolutely certain that no task, ISP or Timer Procedure is referencing the
event group just as you go to delete it. Be aware that the event group id may immediately
be reused by AMX for some other purpose.

AMX Event Manager KADAK 89

7.3 Event Flag Application
The following example, coded in C, is provided to illustrate the use of the AMX Event
Manager for event synchronization.

The example shows two tasks, A and B, which must be synchronized to the state of a
motor. Task A must wait for the motor to be turned on. Task B must wait for the motor
to be on and up to its maximum speed.

A 100 millisecond interval timer samples a motor control status register to determine the
state of the motor. Whenever the motor state changes, the Timer Procedure signals the
event. Note that the Timer Procedure signals both the on/off state and the motor speed
simultaneously. It only signals changes in the motor state so that event synchronization
overhead is minimized.

Note that the Timer Procedure receives its timer's id timerid and a parameter unused,
neither of which is used by the procedure.

A Restart Procedure allocates an event group for motor control. Two of the event flags in
the group are initialized to reflect the state of the motor at the time the system was
started. The remaining event flags in the group are unused. A 100 millisecond periodic
interval timer is created and started.

The creation and starting of Tasks A and B is outside the scope of this example. It is
assumed that if the Restart Procedure is unable to create an event group for motor control,
Tasks A and B will not be started. In our example, Tasks A and B assume that a valid
event group id has been provided in variable motorgroup.

Note that bit 0 of the motor control status register determines if the motor is on or off.
Bit 1 of the motor control status register determines if the motor is at maximum speed.
For convenience, event flags 0 and 1 (bits 0 and 1 in the event group) are assigned to
mirror the corresponding bits in the motor control status register.

90 KADAK AMX Event Manager

#include "CJZZZ.H" /* AMX Headers */

static CJ_ID motorgroup;
static unsigned int motorstatus;

#define MOTORPORT 0x00700018L /* Motor status port */
#define MOTORON 0x01 /* Motor on */
#define MOTORMAX 0x02 /* Motor at maximum speed */

#define MOTOREVT (MOTORON + MOTORMAX)

/* Motor Timer Procedure */
void CJ_CCPP tpmotor(CJ_ID timerid, void *unused)
{

unsigned int status;

status = cjcfin8(MOTORPORT) & MOTOREVT;

/* If a change in motor status occurs */
/* Update motor status */
/* Signal that changes have occurred */

if (status != motorstatus) {
motorstatus = status;
cjevsignal(motorgroup, MOTOREVT, status, CJ_EVCONST);
}

}

void CJ_CCPP rrmotor(void) /* Motor Restart Procedures */
{

CJ_ID timerid;

motorstatus = cjcfin8(MOTORPORT) & MOTOREVT;

/* If an event group is available */
/* Set the initial event states to match the motor status */
/* If a 100 ms periodic timer can be created */
/* Start it to go off at the next AMX system tick */

if (cjevcreate(&motorgroup, "EVMT", motorstatus) == CJ_EROK) {
if (cjtmcreate(&timerid, "TMMT",

(CJ_TMRPROC)tpmotor,
cjtmconvert(100), NULL
) == CJ_EROK)

cjtmwrite(timerid, 1); /* Start timer */
}

}

AMX Event Manager KADAK 91

void CJ_CCPP sttaskA(void) /* Task A */
{

/* Wait forever for motor on*/
if (cjevwait(motorgroup, MOTORON, MOTORON, CJ_EVOR, 0) == CJ_EROK) {

:
Motor is on.
Process accordingly.
:
}

}

void CJ_CCPP sttaskB(void) /* Task B */
{

/* Wait 5 seconds for motor */
/* on AND at maximum speed */

if (cjevwait(motorgroup, MOTOREVT,
MOTORON + MOTORMAX, CJ_EVAND,
cjtmconvert(5000)
) == CJ_WRTMOUT) {

:
Motor not on and up to speed.
Take recovery action.
:
}

else {
:
Motor is on and up to speed.
Process accordingly.
:
}

}

92 KADAK AMX Event Manager

This page left blank intentionally.

AMX Mailbox Manager KADAK 93

8. AMX Mailbox Manager

8.1 Introduction
The AMX Mailbox Manager provides a very flexible, general purpose mechanism for
inter process communication and synchronization using messages. In particular, it offers
an instant solution to a common problem frequently encountered in real-time
applications: one or more processes (producers) having to asynchronously deliver
requests for service to one or more servers (consumers) whose identity is unknown to the
producer.

For example, assume that two printers are available to print reports and that requests for
specific reports originate from an ISP in response to an external action, from a periodic
Timer Procedure and from a task which updates a data base. The producers do not know
which printer, if any, is free for use at the instant they must initiate their requests.
Furthermore, if no printer is free, the ISP and Timer Procedure are unable to wait for a
printer to become available. How then to solve the problem?

The Mailbox Manager readily provides the solution. A mailbox is created to act as print
request queue. The ISP, Timer Procedure and task send their print requests to the
mailbox. Two print server tasks, one for each printer, wait on the mailbox for the next
print request. Each print server completes the generation of one report on its printer and
then goes back to the mailbox for the next request.

As just illustrated, the AMX Mailbox Manager provides message passing services. The
Mailbox Manager permits any task, ISP or Timer Procedure to receive a message. In so
doing, it removes the need for the message sender to identify the message receiver.

Messages are delivered to a mailbox message queue in message envelopes. These are the
same envelopes that are used by AMX to deliver messages to message exchanges (see
Chapters 3.9 and 9).

Any task, ISP, Timer Procedure or Restart Procedure can send a message to a mailbox.
The messages are delivered in FIFO order according to their chronological order of
transmission. A mailbox differs from a message exchange in that a mailbox has no
concept of message priority.

Any task, ISP or Timer Procedure can request a message from a mailbox. Only tasks are
allowed to wait for the arrival of a message if none is present in the mailbox when the
task makes its request. A task can specify the priority at which it is willing to wait and
the maximum time interval which it will wait for a message to arrive.

The task's wait priority determines the order of tasks in the wait queue when more than
one task is waiting for a message to arrive at an empty mailbox.

The flexibility of a mailbox comes from the fact that any number of consumers and
producers can rendezvous at a mailbox without explicit knowledge of each other. Each
consumer and producer only needs to know the id of the mailbox. No consumer or
producer owns the mailbox.

94 KADAK AMX Mailbox Manager

Constraints on the use of mailboxes are self-imposed by the system designer. You
determine which producers and consumers will use each of your mailboxes. The only
restriction imposed by the Mailbox Manager is that only tasks are allowed to wait for a
message to arrive at an empty mailbox.

The AMX Mailbox Manager provides the following mailbox services:

cjmbbuild Create a mailbox (using a definition structure)
cjmbcreate Create a mailbox (using inline parameters)
cjmbdelete Delete a mailbox
cjmbflush Flush all messages or waiting tasks from a mailbox
cjmbsend Send a message to a mailbox

(optional wait for acknowledgement)
cjmbstatus Get the status of a mailbox
cjmbwait Get a message from a mailbox (optional timeout)

Your use of the Mailbox Manager is optional. If you intend to use it you must indicate so
in your System Configuration Module. You must provide a hardware clock and include
the AMX timing facilities.

Mailboxes can be predefined in your System Configuration Module which is processed
by the Mailbox Manager at startup. Mailboxes which are predefined are automatically
created by the Mailbox Manager. The mailbox id assigned to each predefined mailbox is
stored in a variable which you must provide for that purpose.

Note

If your messages must be ordered by priority, you must use
a message exchange.

Using one or the other, but not both, will minimize the code
size of your AMX system.

AMX Mailbox Manager KADAK 95

8.2 Mailbox Use
The Mailbox Manager supports any number of mailboxes. The maximum number of
mailboxes in a system is defined in your System Configuration Module (see Chapter
15.8). The defined maximum sets an upper limit on the number of actual mailboxes that
can be created in your application.

A mailbox must be created by an application before it can be used. Restart Procedures,
tasks, ISPs and Timer Procedures can create mailboxes. It is recommended that only
Restart Procedures and tasks be used to create mailboxes.

Create

Mailbox Manager procedure cjmbbuild or cjmbcreate is used to create a mailbox. The
Mailbox Manager allocates a mailbox and returns a mailbox id to the caller. The mailbox
id is a handle which uniquely identifies the mailbox. It is the responsibility of the
application to keep track of the mailbox id for future reference to the mailbox.

When a mailbox is created, you must specify the maximum number of message
envelopes which are allowed to reside in the mailbox. Mailbox depth may range from
1 to 32767.

Mailbox depth has no effect on AMX memory requirements. That is, increasing a
mailbox depth does not increase memory needs. The mailbox depth can be used to limit
the number of messages allowed to be pending in the mailbox message queue at any
instant. All the messages in a mailbox can be flushed with a call to cjmbflush.

When a mailbox is created, you can provide a unique 4-character tag to identify the
mailbox. The tag can be used subsequently in a call to cjksfind to find the mailbox id
allocated by the Mailbox Manager to the particular mailbox.

Send

A message is sent to a mailbox with a call to procedure cjmbsend. If the specified
mailbox is full, the sender will be given an error indication.

A message is a set of parameter bytes located contiguously in memory. The maximum
number of parameter bytes in a message is configured by you in your System
Configuration Module (see Chapter 15.4). These parameter bytes are completely
application dependent. The message size exactly matches that used for message
exchange messages.

Messages are sent to mailboxes in AMX message envelopes. The Mailbox Manager gets
a free message envelope from the common pool of envelopes maintained by AMX. You
must therefore be sure to allocate enough message envelopes to meet the needs of all of
your mailbox messages as well as your message exchange messages.

96 KADAK AMX Mailbox Manager

Receive

Any task, ISP or Timer Procedure can get a message from a mailbox by calling procedure
cjmbwait. If the mailbox has any messages, the message which arrived first will be
given to the caller. If the mailbox is empty, the caller has the option of waiting for a
message to arrive. ISPs and Timer Procedures must not wait. The caller chooses not to
wait by specifying a negative timeout interval in its call to cjmbwait. If the caller
chooses not to wait, it receives a warning indicating that the mailbox was empty.

Tasks can wait for a message if none is available. The task specifies the interval,
measured in system ticks, which it is willing to wait for a message to arrive. An interval
of 0 indicates a willingness to wait forever. The task must also specify the priority at
which it is prepared to wait, zero being the highest priority.

The Mailbox Manager will add the task to the mailbox's wait queue at the priority the
task said it was willing to wait. Thus a task can preempt other tasks already waiting in
the queue at lower priority.

When a message finally arrives at the mailbox, the Mailbox Manager will give it to the
task, if any, at the head of the mailbox's wait queue. A task switch may occur
immediately if the task being given the message is of higher task priority than the
currently running task.

If no message arrives at the mailbox before the timeout interval specified by a task
expires, the task will be removed from the mailbox wait queue and will resume execution
with a timeout indication.

Acknowledge

The Mailbox Manager services include a send and wait feature. A task (and only a task)
can send a message to a mailbox and wait for acknowledgement of receipt of the message
from the mailbox by some other task. Such messages are called ack-back messages.
Message acknowledgement is reserved for task to task synchronization.

A task calls cjmbsend to send an ack-back message to a mailbox. A parameter in the call
indicates that the sender wishes to wait for message acknowledgement. There is no
timeout on the wait; the task will wait forever for its acknowledgement.

The ack-back message is received by another task with a call to cjmbwait. Once the task
has decoded the message and acted upon the sender's request, it can call AMX procedure
cjtkmsgack with a positive integer answer-back status acknowledging its receipt of the
message. If the waiting message sender task is of higher priority than the task which
received and acknowledged the message, there will be an immediate task switch. The
sending task resumes execution with the receiving task's answer-back status available for
interpretation.

The application tasks must know which messages require acknowledgement. This can be
accomplished either by task design or by message content. AMX helps a little. If a task
ends without acknowledging an ack-back message which it has retrieved from a mailbox,
AMX automatically acknowledges the message with an answer-back status of CJ_EROK.

AMX Mailbox Manager KADAK 97

The Mailbox Manager prohibits a task which has retrieved an ack-back message from
fetching another message from any mailbox or message exchange until the task
acknowledges the ack-back message in its possession.

Flush

At any time, a task (and only a task) can call cjmbflush to flush a mailbox. The Mailbox
Manager will flush all messages, if any, from the mailbox freeing the message envelopes
for reuse. If an ack-back message is flushed, the task waiting for the acknowledgement is
immediately allowed to resume execution with a warning that its message was flushed.

If the mailbox is empty, tasks, if any, waiting at the mailbox for a message are
immediately allowed to resume with a warning that they did not get a message because
the mailbox was flushed. An immediate task switch will occur if any of the flushed tasks
is of higher priority than the task requesting the flush.

Status

At any time, a task can call cjmbstatus to get the status of a mailbox. The status
provides the mailbox message depth and a count of the number of messages in the
mailbox or the number of tasks waiting for a message from the mailbox.

Delete

When a mailbox is no longer needed, it can be deleted with a call to cjmbdelete. The
Mailbox Manager will reject the attempt to delete the mailbox if any task is waiting on
the mailbox wait queue or if any messages remain in the mailbox. When the Mailbox
Manager deletes the mailbox, it marks the mailbox as invalid such that any subsequent
reference to the mailbox will be rejected.

You must be absolutely sure that no producer or consumer is referencing the mailbox just
as you go to delete it. Be aware that the deleted mailbox id may be immediately reused
by AMX for some other purpose.

98 KADAK AMX Mailbox Manager

8.3 Mailbox Application
The following example, coded in C, is provided to illustrate the use of the AMX Mailbox
Manager.

The example shows an ISP sending messages to a mailbox. Two tasks, A and B, accept
and service the messages from the ISP on a first-come first-served basis. The tasks
expect messages to arrive within 5 seconds.

A Restart Procedure creates the mailbox with room for ten messages. In our example, the
tasks and ISP assume a valid mailbox id has been provided in variable mailbox.

The creation and starting of tasks A and B is outside the scope of this example. It is
assumed that if the Restart Procedure is unable to create the mailbox, the tasks will not be
started and the ISP interrupt source will be inhibited.

Note that the two tasks, sttaskA and sttaskB, share a common re-entrant task body,
sttask. In practice, procedure sttaskB could be eliminated and Task B could be created
with sttaskA as the task start address. The example is coded to more clearly illustrate
that two tasks actually exist.

#include "CJZZZ.H" /* AMX Headers */

static CJ_ID mailbox; /* Mailbox id */

struct usermsg { /* Message structure */
int msgtype; /* Application message type */
void *datapntr; /* Application data pointer */
};

void CJ_CCPP rrmsg(void) /* Restart Procedure */
{

cjmbcreate(&mailbox, "MBOX", 10); /* Create mailbox */
}

AMX Mailbox Manager KADAK 99

void CJ_CCPP sttask(void) /* Common task body */
{

union {
struct cjxmsg maxmsg; /* Maximum message size */
struct usermsg umsg; /* User message */
} msg;

int status;

/* Wait 5 sec for message */
/* Wait at priority 0 */

status = cjmbwait(mailbox, &msg, 0, cjtmconvert(5000));

if (status == CJ_EROK) {
:
Process the message in union msg.umsg
:
}

else if (status == CJ_WRTMOUT) {
:
Process timeout - no message in 5 seconds
:
}

else {
:
Process some other error condition
:
}

}

void CJ_CCPP sttaskA(void) /* Task A */
{

for (;;) sttask(); /* Do sttask forever */
}

void CJ_CCPP sttaskB(void) /* Task B */
{

for (;;) sttask(); /* Do sttask forever */
}

void CJ_CCPP inthand(void) /* Interrupt Handler */
{

struct usermsg ispmsg; /* ISP message */
:
Clear interrupt source
Construct message in structure ispmsg
:

/* Send message */
cjmbsend(mailbox, &ispmsg, CJ_NO); /* Do not wait for ack */
}

100 KADAK AMX Mailbox Manager

This page left blank intentionally.

AMX Message Exchange Manager KADAK 101

9. AMX Message Exchange Manager

9.1 Introduction
The AMX Message Exchange Manager provides a very flexible, general purpose
mechanism for inter process communication and synchronization using prioritized
messages. In particular, it offers an instant solution to a common problem frequently
encountered in real-time applications: one or more processes (producers) having to
asynchronously deliver requests of varying priorities for service to one or more servers
(consumers) whose identity is unknown to the producer.

For example, assume that two printers are available to print reports and that requests for
specific reports originate from a periodic Timer Procedure, from a data acquisition task
and from a data base update task. The producers do not know which printer, if any, is
free for use at the instant they must initiate their requests. Furthermore, if no printer is
free, the data acquisition task and Timer Procedure are unable to wait for a printer to
become available. The data acquisition task must be able to inject high priority print
requests when errors are detected. How then to solve the problem?

The Message Exchange Manager readily provides the solution. A message exchange is
created to act as a prioritized print request queue. The data acquisition task, Timer
Procedure and data base task send their print requests to the message exchange. Two
print server tasks, one for each printer, wait on the message exchange for the next print
request. Each print server completes the generation of one report on its printer and then
goes back to the exchange for the next request.

As just illustrated, the AMX Message Exchange Manager provides message passing
services. The Message Exchange Manager permits any task, ISP or Timer Procedure to
receive a message. In so doing, it eliminates any need for the message sender to identify
the message receiver.

The Message Exchange Manager uses a message exchange to deliver messages. A
message exchange consists of four message queues into which messages can be
deposited. The message queues are ordered according to priority (0, 1, 2 or 3), message
queue 0 being of highest priority.

Messages are delivered to the message queues in a message exchange in message
envelopes. These are the same envelopes that are used by AMX to deliver messages to
mailboxes (see Chapters 3.9 and 8).

Any task, ISP, Timer Procedure or Restart Procedure can send a message to a message
exchange. The sender indicates the priority of its message (0 to 3) thereby identifying the
message queue into which it will be delivered.

Any task, ISP or Timer Procedure can request a message from a message exchange.
Only tasks are allowed to wait for the arrival of a message if none is present in the
message exchange when the task makes its request. A task can specify the priority at
which it is willing to wait and the maximum time interval which it will wait for a
message to arrive.

102 KADAK AMX Message Exchange Manager

The task's wait priority is not to be confused with the message queue priority. The
message queue priority determines the priority ordering of messages in the message
exchange when no task is waiting for a message. The task's wait priority determines the
order of tasks in the wait queue when more than one task is waiting for a message to
arrive at an empty message exchange.

The flexibility of a message exchange comes from the fact that any number of consumers
and producers can rendezvous at a message exchange without explicit knowledge of each
other. Each consumer and producer only needs to know which message exchange to use.
No consumer or producer owns the message exchange.

Constraints on the use of message exchanges are self-imposed by the system designer.
You determine which producers and consumers will use each of your message
exchanges. The only restriction imposed by the Message Exchange Manager is that only
tasks are allowed to wait for a message to arrive at an empty message exchange.

The AMX Message Exchange Manager provides the following message exchange
services:

cjmxbuild Create a message exchange (using a definition structure)
cjmxcreate Create a message exchange (using inline parameters)
cjmxdelete Delete a message exchange
cjmxflush Flush all messages or waiting tasks from a message exchange
cjmxsend Send a message to a message exchange

(optional wait for acknowledgement)
cjmxstatus Get the status of a message exchange
cjmxwait Get a message from a message exchange (optional timout)

Your use of the Message Exchange Manager is optional. If you intend to use it you must
indicate so in your System Configuration Module. You must provide a hardware clock
and include the AMX timing facilities.

Message exchanges can be predefined in your System Configuration Module which is
processed by the Message Exchange Manager at startup. Message exchanges which are
predefined are automatically created by the Message Exchange Manager. The message
exchange id assigned to each predefined message exchange is stored in a variable which
you must provide for that purpose.

Note

If your messages do not have to be ordered by priority, use
a mailbox instead of a message exchange.

Using one or the other, but not both, will minimize the code
size of your AMX system.

AMX Message Exchange Manager KADAK 103

9.2 Message Exchange Use
The Message Exchange Manager supports any number of message exchanges. The
maximum number of message exchanges in a system is defined in your System
Configuration Module (see Chapter 15.8). The defined maximum sets an upper limit on
the number of actual message exchanges that can be created in your application.

A message exchange must be created by an application before it can be used. Restart
Procedures, tasks, ISPs and Timer Procedures can create exchanges. It is recommended
that only Restart Procedures and tasks be used to create message exchanges.

Create

Message Exchange Manager procedure cjmxcreate is used to create a message
exchange. The Message Exchange Manager allocates a message exchange and returns a
message exchange id to the caller. The exchange id is a handle which uniquely identifies
the message exchange. It is the responsibility of the application to keep track of the
message exchange id for future reference to the exchange.

When a message exchange is created, you must specify the maximum number of message
envelopes which are allowed to reside in each of the message exchange's four message
queues. Message queue depths may range from 0 to 32767. If a particular queue is not
used, set that queue's depth to zero. At least one message queue must have a non-zero
depth.

Message queue depth has no effect on AMX memory requirements. That is, increasing a
message queue depth does not increase memory needs. The message queue depths can
be used to limit the number of messages allowed to be pending at the message exchange
at any instant. All the messages in a message exchange can be flushed with a call to
cjmxflush. Messages of all priorities will be flushed.

When a message exchange is created, you can provide a unique 4-character tag to
identify the message exchange. The tag can be used subsequently in a call to cjksfind
to find the message exchange id allocated by the Message Exchange Manager to the
particular message exchange.

When the Message Exchange Manager creates a message exchange, it sets all of the
message exchange's message queues empty.

Send

A message is sent to a message exchange with a call to procedure cjmxsend. The sender
must specify the message priority (0 highest; 3 lowest) thereby indicating the message
queue into which the message will be delivered. If the specified message queue is full or
has been defined to have a depth of zero, the sender will be given an error indication.

104 KADAK AMX Message Exchange Manager

A message is a set of parameter bytes located contiguously in memory. The maximum
number of parameter bytes in a message is configured by you in your System
Configuration Module (see Chapter 15.4). These parameter bytes are completely
application dependent. The message size exactly matches that used for mailbox
messages.

Messages are sent to message exchanges in AMX message envelopes. The Message
Exchange Manager gets a free message envelope from the common pool of envelopes
maintained by AMX. You must therefore be sure to allocate enough message envelopes
to meet the needs of all of your message exchange messages as well as your task
messages.

Receive

Any task, ISP or Timer Procedure can get a message from a message exchange by calling
procedure cjmxwait. If the message exchange has any messages, the highest priority
message (0 highest; 3 lowest) which arrived first will be given to the caller. If the
message exchange is empty, the caller has the option of waiting for a message to arrive.
ISPs and Timer Procedures must not wait. The caller chooses not to wait by specifying a
negative timeout interval in its call to cjmxwait. If the caller chooses not to wait, it
receives a warning indicating that the message exchange was empty.

Tasks can wait for a message if none is available. The task specifies the interval,
measured in system ticks, which it is willing to wait for a message to arrive. An interval
of 0 indicates a willingness to wait forever. The task must also specify the priority at
which it is prepared to wait, zero being the highest priority.

The Message Exchange Manager will add the task to the message exchange's wait queue
at the priority the task said it was willing to wait. Thus a task can preempt other tasks
already waiting in the queue at lower priority.

When a message finally arrives at the message exchange, the Message Exchange
Manager will give it to the task, if any, at the head of the message exchange's wait queue.
A task switch may occur immediately if the task being given the message is of higher
task priority than the currently running task.

If no message arrives at the message exchange before the timeout interval specified by a
task expires, the task will be removed from the message exchange wait queue and will
resume execution with a timeout indication.

Acknowledge

The Message Exchange Manager services include a send and wait feature. A task (and
only a task) can send a message to a message exchange and wait for acknowledgement of
receipt of the message from the message exchange by some other task. Such messages
are called ack-back messages. Message acknowledgement is reserved for task to task
synchronization.

A task calls cjmxsend to send an ack-back message to a message exchange. A parameter
in the call indicates that the sender wishes to wait for message acknowledgement. There
is no timeout on the wait; the task will wait forever for its acknowledgement.

AMX Message Exchange Manager KADAK 105

The ack-back message is received by another task with a call to cjmxwait. Once the task
has decoded the message and acted upon the sender's request, it can call AMX procedure
cjtkmsgack with a positive integer answer-back status acknowledging its receipt of the
message. If the waiting message sender task is of higher priority than the task which
received and acknowledged the message, there will be an immediate task switch. The
sending task resumes execution with the receiving task's answer-back status available for
interpretation.

The application tasks must know which messages require acknowledgement. This can be
accomplished either by task design or by message content. AMX helps a little. If a task
ends without acknowledging an ack-back message which it has retrieved from a message
exchange, AMX automatically acknowledges the message with an answer-back status of
CJ_EROK.

The Message Exchange Manager prohibits a task which has retrieved an ack-back
message from fetching another message from any mailbox or message exchange until the
task acknowledges the ack-back message in its possession.

Flush

At any time, a task (and only a task) can call cjmxflush to flush a message exchange.
The Message Exchange Manager will flush all messages, if any, from all message queues
freeing the message envelopes for reuse. If an ack-back message is flushed, the task
waiting for the acknowledgement is immediately allowed to resume execution with a
warning that its message was flushed.

If the message exchange is empty, tasks, if any, waiting at the message exchange for a
message are immediately allowed to resume with a warning that they did not get a
message because the message exchange was flushed. An immediate task switch will
occur if any of the flushed tasks is of higher priority than the task requesting the flush.

Status

At any time, a task can call cjmxstatus to get the status of a message exchange. The
status provides the depth of each of the exchange's message queues and a count of the
number of messages in each of the message queues or the number of tasks waiting for a
message from the message exchange.

Delete

When a message exchange is no longer needed, it can be deleted with a call to
cjmxdelete. The Message Exchange Manager will reject the attempt to delete the
message exchange if any task is waiting on the message exchange wait queue or if any
messages remain in any of the exchange's message queues. When the Message Exchange
Manager deletes the message exchange, it marks the message exchange as invalid such
that any subsequent reference to the message exchange will be rejected.

You must be absolutely sure that no producer or consumer is referencing the message
exchange just as you go to delete it. Be aware that the deleted message exchange id may
be immediately reused by AMX for some other purpose.

106 KADAK AMX Message Exchange Manager

9.3 Message Exchange Application
The following example, coded in C, is provided to illustrate the use of the AMX Message
Exchange Manager.

This example illustrates a solution to the problem posed in the introduction (Chapter 9.1).
Two message processing tasks, A and B, accept and service the messages from the data
acquisition and data base tasks and the Timer Procedure. The processing tasks expect
messages to arrive within 5 seconds.

A Restart Procedure creates the message exchange with message queues 0, 2 and 3, each
of depth 10. In our example, the tasks and Timer Procedure assume a valid message
exchange id has been provided in variable msgexch. The Restart Procedure also creates
and starts the Timer Procedure.

The creation and starting of tasks A and B and the creation of the data acquisition and
data base tasks is outside the scope of this example. It is assumed that if the Restart
Procedure is unable to create the message exchange, the tasks will not be started.

Since we do not know how the data acquisition task and the data base update task were
created, we will assume that their task ids are available in global variables as would be
the case if the AMX Configuration Builder had been used to create the tasks.

The Timer Procedure triggers the data acquisition task once a second and sends a
time-stamp message to the message exchange at the highest priority, 0.

The data acquisition task samples the data, triggers the data base update task and sends a
data sample message to the message exchange at medium priority 2.

The data base update task processes the sampled data, updates the data base and sends a
data update message to the message exchange at low priority 3.

Note that the two tasks, sttaskA and sttaskB, share a common re-entrant task body,
sttask. In practice, procedure sttaskB could be eliminated and Task B could be created
with sttaskA as the task start address. The example is coded to more clearly illustrate
that two tasks actually exist.

AMX Message Exchange Manager KADAK 107

#include "CJZZZ.H" /* AMX Headers */

extern CJ_ID dactid; /* Data acquisition task id */
extern CJ_ID dbtid; /* Data base update task id */

static CJ_ID msgexch; /* Message exchange id */

struct appmsg { /* Message structure */
int msgtype; /* Application message type */
long data; /* Data sample */
void *dbp; /* Pointer to data base */
};

union msgu {
struct cjxmsg dummy; /* Maximum message size */
struct appmsg umsg; /* User message */
};

/* Timer Procedure */
void CJ_CCPP tmrproc(CJ_ID tmrid, void *unused)
{

union msgu msgbuf; /* Message buffer */

:
Construct message in msgbuf.umsg
:

/* Send message at priority 0 */
/* No ack-back */

cjmxsend(msgexch, &msgbuf, CJ_NO, 0);

cjtktrigger(dactid); /* Trigger data acquisition task*/
}

void CJ_CCPP rrmsg(void) /* Restart Procedure */
{

CJ_ID tmrid; /* Timer id */

if (cjtmcreate(&tmrid, "TIMR", /* Create periodic 1 sec timer */
(CJ_TMRPROC)tmrproc,
cjtmconvert(1000), NULL
) == CJ_EROK)

cjtmwrite(tmrid, 1); /* Start timer immediately */

/* Create message exchange */
cjmxcreate(&msgexch, "MSGX", 10, 0, 10, 10);
}

108 rev8 KADAK AMX Message Exchange Manager

void CJ_CCPP sttask(void) /* Common task body */
{

union msgu msgbuf; /* Message buffer */
int status;

/* Wait at priority 0 for */
/* up to 5 sec for message */

status = cjmxwait(msgexch, &msgbuf, 0, cjtmconvert(5000));

if (status == CJ_EROK) {
:
Process the message in msgbuf.umsg
:
}

else if (status == CJ_WRTMOUT) {
:
Process timeout - no message in 5 seconds
:
}

else {
Message retrieval failed
Process some other error condition
}

}

void CJ_CCPP sttaskA(void) /* Task A */
{

for (;;) sttask(); /* Do sttask forever */
}

void CJ_CCPP sttaskB(void) /* Task B */
{

for (;;) sttask(); /* Do sttask forever */
}

AMX Message Exchange Manager KADAK 109

void CJ_CCPP dactask(void) /* Data acquisition task */
{

union msgu msgbuf; /* Message buffer */

:
Perform data acquisition functions
:
if (no_error) {

:
Construct message in msgbuf.umsg
:

/* Send message at priority 3*/
/* No ack-back */

cjmxsend(msgexch, &msgbuf, CJ_NO, 3);
:
}

else { /* Error has occurred! */
:
Construct message in msgbuf.umsg
:

/* Send error message at */
/* priority 0; no ack-back */

cjmxsend(msgexch, &msgbuf, CJ_NO, 0);
}

cjtktrigger(dbtid); /* Trigger data base task */
}

void CJ_CCPP dbasetask(void) /* Data base update task */
{

union msgu msgbuf; /* Completion message */

:
Perform data base update functions
:
:
Construct message in msgbuf.umsg
:

/* Send completion message at*/
/* priority 2; no ack-back */

cjmxsend(msgexch, &msgbuf, CJ_NO, 2);
}

110 KADAK AMX Message Exchange Manager

This page left blank intentionally.

AMX Buffer Manager KADAK 111

10. AMX Buffer Manager

10.1 Introduction
The AMX Buffer Manager simplifies the management of memory buffers in a real-time
system. It provides a general mechanism for the allocation and control of fixed size
buffers.

The AMX Buffer Manager provides fast, efficient access to multiple pools of buffers,
each buffer representing a fixed size block of memory. This form of memory
management meets the requirements of most typical applications and is best suited for
real-time use in which memory block availability must be predictable and in which the
penalties for memory fragmentation cannot be tolerated.

You define a set of buffer pools, each pool containing a set of buffers of uniform size.
Buffer Manager procedures are called to obtain a buffer from a particular pool and to
release it back to the pool when it is no longer required.

When released, the buffer is automatically returned by the Buffer Manager to the pool to
which the buffer belongs. Buffer ownership can be increased so that more than one task
can simultaneously own a shared buffer. Special facilities are provided to assure that if a
buffer is owned by more than one task, it is only returned to its pool when the slowest
owner finally releases it.

Speed of execution is not dependent on the number of pools or buffers. The number of
pools and number of buffers in a pool which can be supported is limited only by memory
availability.

The AMX Buffer Manager provides the following buffer management services:

cjbmbuild Create a buffer pool (using a definition structure)
cjbmcreate Create a buffer pool (using inline parameters)
cjbmdelete Delete a buffer pool
cjbmfree Release a buffer
cjbmget Get a buffer from a specific buffer pool (optional timeout)
cjbmid Get buffer pool id for a specific buffer
cjbmsize Get size of a buffer
cjbmstatus Get status of a buffer pool
cjbmuse Add to buffer use count

Your use of the Buffer Manager is optional. If you intend to use it you must indicate so
in your System Configuration Module. You must provide a hardware clock and include
the AMX timing facilities.

Buffer pools can be predefined in your System Configuration Module which is processed
by the Buffer Manager at startup. Buffer pools which are predefined are automatically
created by the Buffer Manager. The buffer pool id assigned to each predefined buffer
pool is stored in a variable which you must provide for that purpose.

112 KADAK AMX Buffer Manager

10.2 Buffer Pool Use
The Buffer Manager supports any number of pools of buffers. The maximum number of
buffer pools in a system is defined in your System Configuration Module (see Chapter
15.8). The defined maximum sets an upper limit on the number of actual buffer pools
that can be created in your application.

A pool of buffers consists of any number of buffers of a uniform size measured in bytes.
Any buffer size which is a multiple of 4 and greater than or equal to the target dependent
minimum is allowed. The minimum buffer size, CJ_MINBFS bytes, is defined in AMX
header file CJZZZKC.H.

Create Buffer Pool

A buffer pool must be created by an application before it can be used. Restart
Procedures, tasks, ISPs and Timer Procedures can create buffer pools. It is recommended
that only Restart Procedures and tasks be used to create buffer pools.

Buffer Manager procedure cjbmbuild or cjbmcreate is used to create a buffer pool.
The Buffer Manager allocates a buffer pool and returns a buffer pool id to the caller. The
pool id is a handle which uniquely identifies the buffer pool. It is the responsibility of the
application to keep track of the pool id for future reference to the buffer pool. Given the
pointer to a buffer within the pool, the buffer pool id can be obtained by a call to cjbmid.

When a buffer pool is created, you must specify the following parameters: the number of
buffers in the pool, the size of each buffer and a pointer to RAM storage for all of the
buffers in the pool.

When a buffer pool is created, you can provide a unique 4-character tag to identify the
buffer pool. The tag can be used subsequently in a call to cjksfind to find the buffer
pool id allocated by the Buffer Manager to the particular buffer pool.

When the Buffer Manager creates a buffer pool, it subdivides the allocated RAM storage
into the required number of buffers.

All buffers in the pool are linked together on a free list. This free list is internal to the
Buffer Manager, hidden from view. Associated with (but not part of) each buffer is a use
count, also internal to the Buffer Manager. The use count is set to zero for each buffer to
show that it is not in use.

AMX Buffer Manager KADAK 113

Get Buffer

Once a buffer pool has been created, you may call procedure cjbmget to get a buffer
from the pool. The Buffer Manager unlinks a buffer from the pool's free list, sets the
associated buffer use count to one and returns a pointer to the first byte of the buffer.
You may then store and retrieve any data in the buffer as desired.

If there are no free buffers available in the pool when a request to get a buffer from the
pool is made, the caller has the option of waiting for a buffer to become available.
Restart Procedures, ISPs and Timer Procedures must not wait. The caller chooses not to
wait by specifying a negative timeout interval in its call to cjbmget. If the caller chooses
not to wait, it receives a warning indicating that no buffers are available.

Tasks can wait for a buffer if none is available. The task specifies the interval, measured
in system ticks, which it is willing to wait for a buffer to become available. An interval
of 0 indicates a willingness to wait forever. The task must also specify the priority at
which it is prepared to wait, zero being the highest priority.

The Buffer Manager will add the task to the buffer pool wait queue at the priority the task
said it is willing to wait. Thus a task can preempt other tasks already waiting in the
queue at lower priority.

Free Buffer

When the buffer is no longer required, you can call procedure cjbmfree to release the
buffer. You indicate the buffer to be released by specifying the pointer to the first byte of
the buffer, the same pointer that was received when you originally acquired the buffer.
The Buffer Manager decrements the use count associated with the buffer by one. If the
use count becomes zero, the buffer is linked to the free list of the pool to which it
belongs.

Use Count

Once you own a buffer, you may call procedure cjbmuse to increase the use count.
Recall that when a buffer is first obtained, the use count is set to one. If the use count is
then increased by one, the buffer will have to be released twice before it becomes free. In
certain applications such as described in Chapter 10.3, this feature is essential.

114 KADAK AMX Buffer Manager

Status

You may also call procedure cjbmsize to obtain the size of the buffer. Because the
buffer was obtained from a pool with buffers of known size, this call is usually
unnecessary. However, in applications in which the current owner of a buffer did not
actually acquire the buffer from the Buffer Manager, it is convenient to be able to
determine the buffer size.

Given a buffer allocated by the Buffer Manager, you can find its buffer pool id with a call
to procedure cjbmid.

The status of a particular buffer pool can be determined with a call to procedure
cjbmstatus. The status provides the buffer size, the total number of buffers and the
number of free buffers, if any, or the number of tasks, if any, waiting for buffers.

Delete

If at some point, there is no longer a need for any of the buffers in the buffer pool, the
entire buffer pool can be deleted with a call to procedure cjbmdelete. It is your
responsibility to assure that none of the buffers in the pool are still being used at the time
you delete the pool. Once a buffer pool has been deleted, all of the RAM storage
provided by you when the buffer pool was created is available for reuse by the
application.

You must be absolutely certain that no task, ISP or Timer Procedure is referencing the
buffer pool just as you go to delete it. Be aware that the deleted buffer pool id may
immediately be reused by AMX for some other purpose.

AMX Buffer Manager KADAK 115

10.3 Buffer Applications
Consider the following example. A process control system using AMX has a printer on
which errors and status messages are to be logged. These messages are generated by
several tasks as they perform their process control functions. These tasks must not wait
for the printer because they have more important work to do. Furthermore, each message
size may exceed the standard AMX message size.

A printer task receives the messages from the other tasks and outputs them to the printer.
The problem is to get these messages from the process control tasks to the printer task.

The Buffer Manager provides an ideal solution. A pool of buffers is defined and
dedicated to error logging. As each process control task detects an error, it calls the
Buffer Manager to obtain a buffer, fills the buffer with an appropriate error message and
makes an AMX cjmbsend call, sending the buffer pointer in an AMX message envelope
to a printer mailbox.

The printer task permanently waits for these AMX messages to arrive at the printer
mailbox. The printer task extracts the buffer pointer from the AMX message, outputs the
contents of the buffer to the printer, calls the Buffer Manager to release the buffer and
ends. Because the process control tasks need never wait for the printer task or printer,
they are always available to perform their intended functions.

Now consider the following addition to this example. Suppose it is desired to log
messages on both a display and printer. There are several ways this could be done.

1. Two buffers could be obtained from the Buffer Manager. The same message
would be copied into both buffers. One would be sent to a printer mailbox, the
other to a display mailbox.

2. A single buffer could be obtained from the Buffer Manager. It would be filled
with a message and sent to the display mailbox. The display task would output
the message to the display and send the buffer to the printer mailbox. The printer
task would output the message to the printer and release the buffer.

3. A single buffer could be obtained from the Buffer Manager. The message would
be copied into the buffer. The Buffer Manager would be called to increase the
buffer use count by one, for a total use count of two. The buffer pointer would
then be sent to both the printer mailbox and the display mailbox. Both tasks
would output the message to their output device and release the buffer. When the
slowest of these two tasks released the buffer, the use count would be zero and the
buffer would be free.

116 KADAK AMX Buffer Manager

These solutions each have their own advantages and disadvantages. Method 1 requires
twice as many buffers as the other methods and requires extra processor time to copy the
message twice. Method 2 cannot display the message simultaneously on both the CRT
and printer. Also, method 2 requires the display task to know about the printer mailbox.
Method 3 is the most desirable.

Can method 3 be improved? Having the process control tasks know about the display
and printer makes future system modification difficult. Instead, a single reentrant
message routing procedure could be added to process all messages and determine if they
should be sent to the display mailbox or printer mailbox or both. If the message routing
procedure decided to send the buffer to both, it would call the Buffer Manager to increase
the buffer use count before passing the buffer on. As in method 3, the display and printer
tasks would only have to output the buffer, release it and then end. The process control
tasks would only have to get a buffer from the Buffer Manager, fill it with a message and
call the message routing procedure to send it to the appropriate mailboxes.

What if the messages have to be sorted by priority? Just use message exchanges instead
of mailboxes.

AMX Buffer Manager KADAK 117

10.4 Buffer Manager Caveats
Although the Buffer Manager attempts to check as many error conditions as possible, it
cannot protect against a bad system design. However, if a little care is taken during
system design, the Buffer Manager can help make a system more reliable than one that
uses an ad hoc buffer management method.

The most important concept to understand about the Buffer Manager is buffer
ownership. The Buffer Manager owns all free buffers. You must never modify these in
any way.

Once you get a buffer (with a call to the Buffer Manager), you own the buffer. You may
modify the contents of the buffer while it is owned. Once you release the buffer or pass it
to another concurrently executing task or Interrupt Service Procedure, then the buffer is
no longer owned by you and may not be modified or released or have its use count
altered by you in any way.

If the use count is increased by the owner of a buffer, then several simultaneous owners
are allowed. However, when there are several concurrently executing owners, the buffer
content must not be modified unless your design is such that each owner can write to its
own private portion of the buffer. The only permitted operations are reading the buffer
and releasing it. Each owner should either release the buffer or pass the ownership on to
another routine that will release it.

These restrictions are characteristic of message passing between concurrently executing
routines in general, not just of the AMX Buffer Manager. To illustrate the necessity of
these restrictions, a few examples of incorrect usage follow.

1. Task A gets a buffer, fills it, passes it to Task B and releases it. Task B attempts
to use the data in the buffer.

The problem is that Task A released the buffer after it passed ownership to
Task B. Thus Task B will receive a buffer which it does not own. If Task B
modifies the buffer, then the Buffer Manager may produce unpredictable results
the next time it tries to use the buffer.

The solution is to have Task B release the buffer when it is finished with it.
Task B may do this because it owns the buffer after it receives it from Task A.

2. Task A gets a buffer, fills it, passes it to Task B, increments the use count by one
and passes the buffer to task C. Tasks B and C use the buffer and release it.

The problem is that Task A has passed ownership to Task B without first retaining
the ownership by increasing the use count. It then increases the use count of a
buffer it doesn't own. In the meantime, Task B may have finished using the
buffer and released it.

The solution is to have Task A expand the ownership by increasing the use count
before passing the buffer to Task B. Task A then retains one half of the
ownership and may pass this ownership on to Task C.

118 KADAK AMX Buffer Manager

This page left blank intentionally.

AMX Memory Manager KADAK 119

11. AMX Memory Manager

11.1 Introduction
The AMX Memory Manager simplifies the management of memory in an AMX system.
It provides a general mechanism for the dynamic allocation and control of memory and is
specifically designed for use in a multitasking environment.

Multitasking adds particular difficulties to the general problem of memory allocation.
For example, high level language memory management procedures, such as C's malloc,
calloc or free, cannot be called from concurrently executing tasks since the procedures
are usually not reentrant.

The Memory Manager resolves these difficulties. The Memory Manager's general
allocation procedures allow the creation of memory pools from which concurrently
executing tasks can allocate and free blocks of memory.

You define a set of memory pools, each pool containing a set of one or more sections of
contiguous memory. Memory Manager procedures are called to obtain a memory block
of any size from a particular memory pool and to release it back to the pool when it is no
longer required.

When released, the memory is automatically returned by the Memory Manager to the
memory pool to which it belongs. Memory block ownership can be increased so that
more than one task can simultaneously own a shared piece of memory. Special facilities
are provided to assure that if a memory block is owned by more than one task, it is only
returned to its pool when the slowest owner finally releases it.

The number of memory pools and the amount of memory in each pool is limited only by
memory availability.

A particular unique feature of the Memory Manager permits any block of memory
(including those acquired from a memory pool controlled by the Memory Manager) to be
treated as a memory pool from which smaller private blocks can be dynamically
allocated. This feature allows a task which has well defined memory requirements to
reserve a memory block for its own private use. The task can then call on the Memory
Manager to control the allocation and release of smaller blocks from within the larger
private block.

The AMX Memory Manager provides the following memory management services:

cjmmbuild Create a memory pool (using a definition structure)
cjmmcreate Create a memory pool (using inline parameters)
cjmmdelete Delete a memory pool
cjmmfree Release a block of memory
cjmmget Get a block of memory
cjmmid Get memory pool id for a specific memory block
cjmmresize Alter the size of a block of memory
cjmmsection Add a section of memory to a memory pool
cjmmsize Get the size of a block of memory
cjmmuse Add to block use count

120 KADAK AMX Memory Manager

Your use of the Memory Manager is optional. If you intend to use it you must indicate so
in your System Configuration Module.

Memory pools can be predefined in your System Configuration Module which is
processed by the Memory Manager at startup. Memory pools which are predefined are
automatically created by the Memory Manager. The memory pool id assigned to each
predefined memory pool is stored in a variable which you must provide for that purpose.

AMX Memory Manager KADAK 121

11.2 Nomenclature
The following nomenclature has been adopted by the Memory Manager.

A Memory Section is a contiguous area of Random Access Memory (RAM) which has
been assigned by the user to the Memory Manager for use as part of a memory pool.

A Memory Pool is a collection of one or more memory sections under the control of the
Memory Manager from which tasks can request memory to be allocated for their private
use.

A Memory Block is a contiguous portion of memory allocated by the Memory Manager
from a memory pool for use by a task.

A Header (i.e. Memory Block Header) is an area of RAM associated with (but not part
of) a memory block. It contains control information which is private to the Memory
Manager and not accessible to any task.

A Block Use Count is an integer associated with (but not part of) a memory block. It is
used by the Memory Manager to keep track of the number of owners of the memory
block.

A Memory Pool Id is a handle provided by the Memory Manager to identify a memory
pool.

122 rev8 KADAK AMX Memory Manager

11.3 Memory Pool Use
The Memory Manager supports any number of pools of memory. The maximum number
of memory pools in a system is defined in your System Configuration Module (see
Chapter 15.8). The defined maximum sets an upper limit on the number of actual
memory pools that can be created in your application.

A memory pool consists of any number of memory sections of varying sizes measured in
bytes. Any memory section size which is a multiple of 4 and greater than or equal to a
target dependent minimum is allowed. The minimum memory size, CJ_MINSMEM bytes, is
defined in AMX header file CJZZZKC.H. The minimum is specified in the processor
specific AMX Target Guide. Usually a memory pool consists of a single large memory
section.

Create

A memory pool must be created by an application before it can be used. Restart
Procedures, tasks, ISPs and Timer Procedures can create memory pools. It is
recommended that only Restart Procedures and tasks be used to create memory pools.

Memory Manager procedure cjmmcreate is used to create a memory pool. The Memory
Manager allocates a memory pool and returns a memory pool id to the caller. The pool id
is a handle which uniquely identifies the memory pool. It is the responsibility of the
application to keep track of the pool id for future reference to the memory pool.

When a memory pool is created, you can assign a memory section to it by indicating the
size of the section and providing a pointer to the memory section RAM storage area.
Alternatively, a memory pool can be created without any memory and memory sections
can be assigned to the memory pool at a later time with calls to procedure cjmmsection.
There is no restriction on the number of memory sections that can be assigned to a
memory pool. Note that the Memory Manager treats two memory sections as disjoint
pieces of memory even if the memory for the two sections happens to be physically or
logically contiguous.

When a memory pool is created, you can provide a unique 4-character tag to identify the
memory pool. The tag can be used subsequently in a call to cjksfind to find the
memory pool id allocated by the Memory Manager to the particular memory pool.

When the Memory Manager assigns a memory section to a memory pool, it treats the
memory section as one large free memory block linked together with other free blocks on
a free list. This free list is internal to the Memory Manager, hidden from view.

AMX Memory Manager KADAK 123

Get Memory

Once a memory pool has been created, a task can call the Memory Manager procedure
cjmmget to get a block of memory of any size from the pool. Only tasks are allowed to
call the Memory Manager to acquire memory blocks.

If the Memory Manager is able to find a block of memory in the memory pool large
enough to meet the caller's requirements, the caller will be given a pointer to the memory
block and an indication of the actual size of that block. The block may be marginally
larger than the size requested. The memory block use count is set to one.

If the Memory Manager cannot locate a memory block in the memory pool large enough
to meet the caller's requirement, it returns an error indication to the caller and identifies
the largest block which is available in the pool at that instant. Note, however, that if the
calling task immediately requests a block of memory equal to this largest memory block
size, the request may still fail because, in a multitasking system, other higher priority
tasks may have grabbed some of that memory before the task can make another request to
the Memory Manager.

Given a memory block allocated by the Memory Manager, you can find its memory pool
id with a call to procedure cjmmid.

Free Memory

When use of a memory block is no longer required, the owner can call procedure
cjmmfree to release the block. The caller specifies the block to be released by passing
the Memory Manager the same pointer that it received when the Memory Manager
originally allocated the block.

The Memory Manager decrements the memory block's use count and, if the count goes to
zero, returns the block to the memory pool to which it belongs. If there are any free
memory blocks adjacent to the released block, they are merged with the block being
released to form a larger block.

Once a block is released, no task in the system can make reference to it. The block enters
the private domain of the Memory Manager.

Use Count

When the Memory Manager allocates a block of memory for the use of a task, it sets the
block's use count to one. The block owner may call the Memory Manager procedure
cjmmuse to increase the use count. If the use count is increased by one, the block will
have to be released twice before it becomes free.

The block use count provides the key to memory block ownership. The Memory
Manager owns all free blocks in all memory pools. One or more tasks can own an
already allocated memory block. This concept of block ownership is the same as that of
buffer ownership provided by the AMX Buffer Manager. Refer to Chapters 10.3 and
10.4 for examples of the proper use of this ownership concept.

124 KADAK AMX Memory Manager

Size

The Memory Manager procedure cjmmsize can be used to obtain the size of a particular
memory block. This feature can be useful if one task is given ownership of a memory
block by another task. The new block owner can check the size of the memory block to
be sure that it meets its requirements. If a task corrupts the contents of any memory
location outside the bounds of the memory block, the effects are unpredictable and
potentially disastrous.

Resize

The Memory Manager procedure cjmmresize can be used to grow or shrink the size of a
memory block. If a task owning a memory block finds that its memory block is too small
or too large, the task can call cjmmresize to try to adjust the size of the block to meet its
needs.

If the memory block is to be shrunk, the Memory Manager carves a piece from the high
end of the block and adds the new fragment to the memory pool's free list. The fragment
is merged with an adjacent free memory block, if one exists, to form a larger free block.

A memory block can only grow upward in memory. If the memory block is to grow in
size, the Memory Manager checks to see if the memory block immediately higher in
memory than the caller's block is free. If that free block, merged with caller's block,
meets the growth requirement, the blocks are merged to form a larger block and then
shrunk to meet the caller's specification. If there is no adjacent free block or if one exists
but is not large enough to meet the growth requirement, the caller's resize request is
rejected with a warning indication.

Note

Because memory blocks are carved from the end (top) of
free memory blocks, you will rarely be able to grow a block
in size.

Memory Manager procedure cjmmsection can be used to add more memory sections to a
memory pool. The addition of memory sections to a memory pool simply increases the
memory available to the Memory Manager for allocation from the pool.

Memory sections cannot be removed from a memory pool.

AMX Memory Manager KADAK 125

Delete

If at some point, there is no longer a need for any of the memory in a memory pool, the
entire memory pool can be deleted with a call to procedure cjmmdelete. It is your
responsibility to assure that none of the memory in the pool is still being used at the time
you delete the pool. Once a memory pool has been deleted, all of the memory section
RAM storage assigned by you to the memory pool is available for reuse by the
application.

You must be absolutely certain that no task, ISP or Timer Procedure is referencing the
memory pool just as you go to delete it. Be aware that the deleted memory pool id may
immediately be reused by AMX for some other purpose.

126 KADAK AMX Memory Manager

11.4 Private Memory Allocation
A particularly unique feature of the Memory Manager permits any block of memory
(including those acquired from the Memory Manager) to be treated as memory from
which smaller private blocks can be dynamically allocated.

To use this feature, a task calls procedure cjmmcreate giving it a pointer to a private area
of memory whose access is to be controlled by the Memory Manager. Blocks allocated
by procedure cjmmget are suitable for this purpose. The caller must also specify the size
of the memory area provided.

The Memory Manager takes the memory area which it has been given and converts it into
a memory pool for the private use of the task. This memory pool is identified by a
memory pool id which is returned to the caller. As long as the task does not make the
memory pool id public, the pool remains private to the task.

The memory pool id must be used to allocate smaller blocks from the memory pool.
Memory Manager procedure cjmmget is used to acquire a memory block from the private
memory pool identified by the private memory pool id. Once a private memory pool has
been created, any task having the memory pool id can acquire a memory block from the
pool. It is up to the task which created the memory pool to determine which tasks are
given the memory pool id.

AMX Circular List Manager KADAK 127

12. AMX Circular List Manager

12.1 Circular Lists
The AMX Circular List Manager provides a general circular list facility for use by
application program modules.

Circular lists must be located in alterable memory (RAM).

A circular list is a data structure used by an application to maintain an ordered list of 8-
bit, 16-bit or 32-bit elements. The elements are stored in slots in the list. Each list
contains a fixed, user defined number of slots.

The AMX Circular List Manager provides the following list manipulation procedures:

cjclinit Reset (initialize) a circular list
cjclabl Add to bottom of circular list
cjclatl Add to top of circular list
cjclrbl Remove from bottom of circular list
cjclrtl Remove from top of circular list

The Circular List Manager procedures are reentrant permitting them to be shared by
concurrently executing tasks, ISPs and Timer Procedures.

Examples

Elements can be added to the top and removed from the bottom of a circular list. This
makes these lists particularly attractive for character buffering by ISPs. Received
characters can be added to the bottom of the circular list and removed from the top. If the
process that removes a character decides that it cannot yet handle the character, it can
return the character to the top of the circular list.

16-bit lists are useful for handling both a character and its receiver status. When a
character is received, the character and its status are added to the bottom of a circular list.
The task processing received characters pulls a 16-bit element from the top of the circular
list to get each character and its status.

32-bit lists can be used to manage pointers to more complex structures. For instance, a
sawmill application might use two lists to keep track of log measurements and resulting
lumber counts in a Log Description Block, a private application structure. As logs are
measured, their dimensions are inserted into a Log Description Block. A pointer to the
block is added to the bottom of a circular list which serves as input to the cutting process.
This process removes a pointer to the next available Log Description Block from the top
of this list. Once the log is cut, the log's lumber results are added to the block and the
block pointer is added to the bottom of another circular list for lumber tally processing.

128 KADAK AMX Circular List Manager

12.2 Circular List Use

A circular list is created by an application with a call to procedure cjclinit. The caller
must provide three parameters: the number of slots in the list, the size of each slot (1, 2 or
4 bytes) and a pointer to RAM storage for the circular list. The number of slots in a
circular list is limited only by available memory.

The RAM storage area must provide (n * s) + sizeof(struct cjxclist) bytes
where n is the number of slots and s is the slot size (1, 2 or 4).

The Circular List Manager creates the list in the storage provided and sets the list empty.
The Circular List Manager procedures can then be used to add and remove elements of
the defined size at the top and/or bottom of the list.

The Circular List Manager procedures provide the caller with the status of the list
following each call. When adding an element to the list, the caller will receive notice if
the list is already full. If the element is added to the list, the caller will be notified if the
list has just become full.

When removing an element from the list, the caller will receive notice if no element was
on the list. If an element is retrieved from the list, the caller will be notified if the list has
just gone empty.

AMX Circular List Manager KADAK 129

12.3 Circular List Structure
Circular lists are application data structures which are only accessible by calls to the
AMX Circular List Manager. The internal structure of the list is private to the Circular
List Manager.

Lists can be created dynamically or statically by any application program.

The following examples illustrate 8-bit, 16-bit and 32-bit lists created in C. NSLOT is
defined to be the number of slots in each list.

#include "CJZZZ.H" /* AMX Headers */

typedef char SLOT1; /* 1 byte slot */
typedef short int SLOT2; /* 2 byte slot */
typedef long SLOT4; /* 4 byte slot */

#define NSLOT 64 /* 64 slots in the list */

struct { /* List of 1 byte slots */
struct cjxclist header;
SLOT1 slots[NSLOT];
} bytelist;

struct { /* List of 2 byte slots */
struct cjxclist header;
SLOT2 slots[NSLOT];
} shortlist;

struct { /* List of 4 byte slots */
struct cjxclist header;
SLOT4 slots[NSLOT];
} pntrlist;

Bytelist is a circular list of NSLOT 8-bit elements.
Shortlist is a circular list of NSLOT 16-bit elements.
Pntrlist is a circular list of NSLOT 32-bit elements.

130 KADAK AMX Circular List Manager

This page left blank intentionally.

AMX Linked List Manager KADAK 131

13. AMX Linked List Manager

13.1 Introduction
The Linked List Manager provides a general set of fast linked list services suitable for
use in real-time systems. The Linked List Manager removes the tedium and potential for
serious error inherent in many applications in which list maintenance is implemented by
each programmer in unique and varying ways.

The Linked List Manager offers a feature not often found in similar utilities. Objects
manipulated by the Linked List Manager can concurrently reside on more than one list.

The Linked List Manager also resolves list manipulation races which frequently occur in
real-time multitasking applications. The Linked List Manager assures that no list
linkages will be corrupted because of races between tasks, ISPs or Timer Procedures
attempting to manipulate the same list.

The Linked List Manager supports doubly linked lists in which all objects on a list are
linked in forward and backward directions.

The Linked List Manager also supports keyed lists in which the order of objects in the list
is determined by an ordering key provided by the application.

The AMX Linked List Manager provides the following list manipulation procedures.
The procedures are reentrant permitting them to be shared by concurrently executing
tasks, ISPs and Timer Procedures.

cjlmcreate Create an empty list

cjlminsh Insert at the head of a list
cjlminst Insert at the tail of a list
cjlminsc Insert before the specified object on list

cjlmrmvh Remove from the head of a list
cjlmrmvt Remove from the tail of a list
cjlmrmvc Remove specified object from a list

cjlmhead Find current head of a list
cjlmtail Find current tail of a list
cjlmnext Find next object on a list (walk towards tail)
cjlmprev Find previous object on a list (walk towards head)

cjlminsk Insert into a keyed list
cjlmordk Reorder object in a keyed list
cjlmmerg Merge two lists

132 KADAK AMX Linked List Manager

13.2 Linked Lists

Terminology

A list header is a structure provided by the application to be used to anchor a list. The
list header is used to identify a list. The content of the list header is private to the Linked
List Manager.

An object is an application data structure which represents the elements which reside on
a list. For example, AMX maintains a list of Task Control Blocks (TCBs). Each TCB is
an instance of a data structure representing the state of a task. Hence, the TCB qualifies
as an object.

A list node is a structure embedded in an object. The list node is used to link the object
into a simple doubly linked list. The content of the list node is private to the Linked List
Manager.

A key is an unsigned integer which is used to determine the order of objects in a keyed
list. Each object in a keyed list must have a key. Objects in a keyed list are ordered such
that key values are monotonically increasing from the head of the list to the tail of the list.

A key node is a structure embedded in an object. The key node is used to link the object
into a keyed list. The object's key resides in the key node. The content of the key node is
private to the Linked List Manager.

The head of a list is the first object on a list. The tail of a list is the last object on a list.
An empty list has no head or tail. If only one object is on a list, it is both the head and
tail of the list.

The node offset is the offset (i.e. displacement) into an object at which the list node (or
key node) resides. The node offset assigned for a particular list is fixed. Any object
which can reside on the list must have a list node (or key node) in the object at the node
offset assigned to that list.

AMX Linked List Manager KADAK 133

Figure 13.2-1 illustrates three doubly linked lists of apples and oranges. All apples and
oranges reside on a fruit list. Fresh apples or oranges reside on a fresh list. Rotten apples
or oranges reside on a rotten list.

The list objects are assumed to be data structures describing apples and oranges. Each
object contains two list nodes: one for use with the fresh list or rotten list, the other for
use with the fruit list.

Note that a single list node can be used for the fresh and rotten lists since these lists are
mutually exclusive. All fruit list nodes reside at the same node offset in apple or orange
objects. All fresh and rotten list nodes reside at the same node offset in apple and orange
objects. The Linked List Manager lets you mix objects of different types on the same list
as long as each object has a link node in it at the correct node offset for the particular list.

Fresh
List Header

Rotten
List Header

Fruit
List Header

good good good bad badbad

Apple Apple AppleOrange Orange Orange

Figure 13.2-1 Doubly Linked Lists

134 KADAK AMX Linked List Manager

13.3 Linked List Use
A list consists of a list header and objects linked to the list header by list nodes (or key
nodes). Storage for the list header must be provided by you. A pointer to the list header
acts as the list identifier.

An empty list is created by calling procedure cjlmcreate with a pointer to the list header
storage. When the list is created, you must specify the node offset (byte displacement) at
which link nodes (key nodes) will be found in objects which can reside on the list.

Once a list has been created, any object which has a link node (or key node) at that list's
node offset can be added to the list.

Objects can be inserted at or removed from the head or tail of the list. You can always
find the head or tail of the list. Given a pointer to any object on the list, you can find the
next or previous object, insert another object ahead of it or remove it from the list.

If the objects have a key node at the list's node offset, then the list is a keyed list. All
objects on a keyed list must have key nodes at the list's node offset. A new object is
added to a keyed list according to the key provided in the call to cjlminsk. The object
will be inserted into the list after all objects whose key is numerically less than or equal
to the specified key. Thus keyed objects are added after all other objects with the same or
lesser key.

The position of an object in a keyed list can be altered by calling cjlmordk with a new
key for the object. The list will be reordered moving the specified object to the correct
position in the list according to its new key value. Reordering is usually faster than
removing the object with cjlmrmvc and reinserting with cjlminsk.

AMX Linked List Manager KADAK 135

The following example coded in C illustrates the use of the Linked List Manager. An
object called uobject is defined with a key node at offset keynode in the object. An
array of ten objects is provided. A keyed list keylist is created and the ten objects are
added to the list in random order. The list is then perused to locate the actual position in
the list of the sixth object in the array. The object is removed from the keyed list and
added to the tail of a simple doubly linked list called extlist.

#include "CJZZZ.H" /* AMX Headers */

extern unsigned int random(); /* Random number generator */

struct uobject {
int id; /* Object identifier */
int data; /* Other application data */
struct cjxlk keynode; /* Key node */
char moredata[10]; /* More application data */
struct cjxln listnode; /* List node */
int lastdata; /* Last application data */
};

/* Local variables */

static struct cjxlh keylist; /* Keyed list header */
static struct cjxlh extlist; /* Extraction list */

#define NUMOBJ 10 /* Ten objects */

/* Array of objects */
static struct uobject objarray[NUMOBJ];

136 KADAK AMX Linked List Manager

void CJ_CCPP example(void)
{

int i;
struct uobject *objp; /* Object pointer */
int nodeofs; /* Node offset */

nodeofs = (char *)(&objarray[0].keynode) - (char *)&objarray[0];

cjlmcreate(&keylist, nodeofs); /* Create empty keyed list */

nodeofs = (char *)(&objarray[0].listnode) - (char *)&objarray[0];

cjlmcreate(&extlist, nodeofs); /* Create empty extraction list*/

objp = &objarray[0]; /* First object */

for (i = 1; i <= NUMOBJ; i++) {
objp->id = i; /* Insert object id */

/* Add to list in random order */
cjlminsk(&keylist, objp++, random());
}

objp = cjlmhead(&keylist); /* Find head of list */

while (objp != NULL) {
if (objp->id == 6)

break; /* Found object of interest */

objp = cjlmnext(&keylist, objp);
}

if (objp != NULL) {
cjlmrmvc(&keylist, objp); /* Remove object from keylist */
cjlminst(&extlist, objp); /* Add to extraction list */
}

}

Advanced Topics KADAK 137

14. Advanced Topics

14.1 Fatal Exit
There are a number of conditions which, if encountered by AMX, are considered to be
fatal. Any attempt by AMX to continue execution will lead to unpredictable results at
best. All of these conditions cause AMX to force a branch to its fatal exit handler at
cjksfatal in application module CJZZZUF.C.

Insufficient Memory

The most common of these conditions occurs at startup. Many of the AMX managers
include a Restart Procedure which is executed by AMX during its startup phase. Some of
these managers must initialize a portion of the AMX Data Segment which is private to
their needs. If any of these managers find that their needs exceed the size of the data
segment provided in your AMX System Configuration Module, AMX takes its fatal exit.
To proceed would imply using memory which does not belong to AMX.

Task Error Traps

AMX will take its fatal exit if a processor dependent task trap exception such as division
by zero, arithmetic overflow or an array bound error occurs in any Restart Procedure,
Interrupt Service Procedure or Timer Procedure.

If any of these errors occur in a task which does not have a task trap handler (see Chapter
4.5) for the corresponding error, AMX will take its fatal exit.

AMX and its managers avoid instructions which produce arithmetic overflow or array
bound error exceptions. In the rare occasions when AMX or its managers use division,
the division is guaranteed not to produce a divide fault.

Application Faults

If your application encounters conditions which are deemed fatal, you can take the AMX
fatal exit by calling procedure cjksfatal. You can define your own negative fatal exit
codes <= CJ_FEBASE to identify your fatal error conditions.

138 KADAK Advanced Topics

Fatal Exit Procedure

AMX provides a default Fatal Exit Procedure at entry point cjksfatal in the AMX
application startup module CJZZZUF.C.

The default Fatal Exit Procedure disables the external interrupt system and loops forever.
Only a hardware reset can be used to recover.

The Fatal Exit Procedure must not make any use of AMX or any of its managers.

In general, there is little that the Fatal Exit Procedure can do. It certainly cannot rectify
the situation. Any processing that it does should be done with the interrupts disabled if
possible. If not, all interrupt sources should be reset or otherwise inhibited if hardware
permits. Once all interrupt sources have been eliminated, the external interrupt system
can be enabled. Only then is it acceptable to try restarting your AMX system.

Upon entry to the Fatal Exit Procedure, the following conditions exist:

Interrupts are immediately disabled.
All registers are free for use.
A fatal exit code is provided as a parameter.
(see CJ_FExxx definitions in Appendix B)
The stack in effect at the time of the fatal exit is in use.

You are free to edit procedure cjksfatal in module CJZZZUF.C to meet your specific
application requirements.

Advanced Topics KADAK 139

14.2 User Error Procedure
Most AMX procedures return error status to the caller. The error status is a signed
integer.

CJ_EROK = 0 No error
CJ_WRxxx > 0 Warning: possible fault
CJ_ERxxx < 0 Error: may be unrecoverable

The defined error codes are summarized in Appendix B.

Before returning an error or warning condition to the caller, AMX calls its User Error
Procedure cjkserror in AMX application startup module CJZZZUF.C. The User Error
Procedure receives the AMX error code and the task id of the task executing at the time
of the error. The task id will be CJ_IDNULL if the error occurred in an ISP call to AMX.

Upon entry to the User Error Procedure, interrupts may be enabled or disabled depending
upon conditions when the error was detected.

The User Error Procedure executes in the context of the task, ISP, Timer Procedure,
Restart Procedure or Exit Procedure which made the errant AMX call. The User Error
Procedure can only make AMX calls which an ISP is allowed to make.

If the User Error Procedure returns to AMX, it must pass the error code back to AMX for
return to the caller of the AMX procedure in which the error was detected.

The default User Error Procedure cjkserror ignores warnings allowing AMX to return
the unaltered warning code back to the AMX procedure caller. When an error is
detected, public procedure cjksbreak is called allowing error conditions to be isolated
for testing purposes. By putting a debug breakpoint on cjksbreak you can isolate all
occurrences of errors detected by AMX.

In general, there is little that the User Error Procedure can do. It can, however, be
extremely useful for locating faults in your application during initial testing. It is also
useful for locating infrequently occurring error conditions which are not being checked
by your code and hence are going undetected in an otherwise working system.

You are free to edit procedure cjkserror in module CJZZZUF.C to meet your specific
application requirements.

Application Errors

If your application encounters conditions which are deemed serious errors, you can call
the AMX error procedure cjkserror. You can define your own negative error codes
<= CJ_ERBASE or positive warning codes >= CJ_AKBASE to identify your error
conditions. Note that CJ_AKBASE is the same positive numbering base reserved for your
message acknowledgement codes.

140 KADAK Advanced Topics

14.3 Task Scheduling Hooks
AMX does not provide direct support for specific hardware extensions such as a math
coprocessor or a memory management unit. Instead, AMX allows a set of application
procedures to be connected to its Task Scheduler. These procedures can save and restore
hardware dependent parameters specific to your application whenever a task switch
occurs.

There are four critical points within the AMX Task Scheduler. These critical points
occur when:

a task is started
a task ends
a task is suspended
a task is allowed to resume.

AMX allows a unique application procedure to be provided for each of these critical
points. Pointers to your procedures are installed with a call to procedure cjkshook. You
must provide a separate procedure for each of the four critical points. Since these
procedures execute as part of the AMX Task Scheduler, their operation is critical. These
procedures must be coded in assembler using techniques designed to assure that they
execute as fast as possible.

The AMX Task Scheduler calls each of your procedures with the same calling
conventions.

Upon entry to your scheduling procedures, the following conditions exist:

Interrupts are disabled and must remain so.
The Task Control Block address is in a register.
The task stack is in use.
A subset of the processor registers is free for use.
All other registers must be preserved.

See the processor specific AMX Target Guide for exact register usage and
calling sequence.

Your procedures receive a pointer to the Task Control Block of the task which is being
started, ended, suspended or resumed. Your procedures are free to use the task's stack.
However, you must not attempt to use this stack to save information. For instance,
popping the return address, pushing parameters onto the stack and then returning to AMX
is not allowed.

If you have to save information as part of the task's state, you should use the storage in
the Task Control Block reserved for the private use of your application (see Chapter
3.12). If necessary, provide an extension to your Task Control Block and install a pointer
to the extension in the portion of the Task Control Block reserved for your use.

Once your procedures are installed, you will observe a degradation in the AMX task
switching performance. Each call to your procedure will add the setup and calling
overhead plus the time it takes your procedure to execute.

Advanced Topics KADAK 141

14.4 Abnormal Task Termination
A task is a procedure which is called by the AMX Task Scheduler. The task ends
execution normally by returning to AMX. AMX provides procedure cjtkend which can
be used by a task to end execution and return to AMX under circumstances in which its
stack is deeply nested.

These two methods by which a task may end execution are considered normal
termination. A task has to be running to end in this fashion. No other task can force a
task, other than itself, to end.

AMX also provides a set of services which permit one task to force the abnormal
termination of another task. These services are not to be treated lightly. Their
description has been deferred to this chapter to indicate that they should be rarely
invoked.

It is assumed that you have read Chapter 3 of this manual and are familiar with the AMX
Task State Diagram presented in Figure 3.2-1.

The ability to arbitrarily terminate a task is one of the most abused privileges afforded by
some multitasking systems. The AMX philosophy is to encourage well structured task
designs in which there is rarely the need for an uncontrolled task termination. In many
cases, a modification to your system design can eliminate the apparent need to arbitrarily
terminate a task. However, occasionally system design does demand that an erring task
be eliminated for the good of all others. The availability of a controlled task termination
can greatly enhance your options in this case.

AMX offers the following task termination services:

cjtkstop Force a task to stop
cjtkkill Kill a task by forcing it to stop
cjtkdelete Delete a task
cjtkterm Enable/disable abnormal task termination

The AMX termination services will not be included in your AMX system if your tasks do
not call any of these procedures.

Stop a Task

A task can be stopped. The effect is the same as if the task had just issued a call to
cjtkend to end its own operation. Only a task which is running, waiting or ready to
execute can be stopped. A task can stop itself.

A task that has been stopped does not cease to exist. It simply ends operation. If it has
outstanding trigger requests for execution, the task will be allowed to run again.

142 KADAK Advanced Topics

Kill a Task

A task can be killed. The task is first stopped as just described. All outstanding trigger
requests to the task for its execution are purged. The effect is the same as if the task
continued to make calls to cjtkend to end its operation until finally there were no task
execution requests remaining. A task can kill itself.

There are two kill procedures: cjtkkill and cjtkxkill. Use cjtkxkill to kill a
message exchange task (see Chapter 14.6). Use cjtkkill to kill all other tasks.

A task that has been killed does not cease to exist. Any new requests to trigger the task
will be honoured.

Delete a Task

A task can be deleted. A task which is deleted ceases to exist. Its task id becomes
invalid and may be reused by AMX for some other purpose. A task can delete itself.

There are two delete procedures: cjtkdelete and cjtkxdelete. Use cjtkxdelete to
delete a message exchange task (see Chapter 14.6). Use cjtkdelete to delete all other
tasks.

Task Termination Procedure

To safeguard against abuses of its task termination services, AMX inhibits any task from
being stopped, killed or deleted until the application indicates its willingness to allow the
task to be abnormally terminated by calling procedure cjtkterm.

When you call cjtkterm to allow abnormal termination of a task, you must give AMX a
pointer to a Task Termination Procedure to be called by AMX whenever the task is
stopped, killed or deleted. You can subsequently inhibit the task's abnormal termination
by calling cjtkterm with a CJ_NULLFN procedure pointer.

Once a task's abnormal termination is enabled, it remains enabled even if the task ends
normally. The next time the task executes, it will still be able to be abnormally
terminated. The previously defined Task Termination Procedure remains in effect until it
is cancelled by calling cjtkterm to install a CJ_NULLFN pointer.

If a task is stopped or killed, AMX resets its Task Termination Procedure pointer to
CJ_NULLFN thereby inhibiting any further requests to stop or kill the task until a new Task
Termination Procedure has been provided for the task.

If a task which can be abnormally terminated wishes to wait for a buffer, a semaphore, an
event group or a message from a mailbox or message exchange, it must temporarily
disable task termination, make the wait call and then reinstall its Task Termination
Procedure.

Advanced Topics KADAK rev8 143

A Task Termination Procedure can be coded as a C procedure as illustrated in the
following example. The procedure receives an integer reason code indicating whether
the task is being stopped, killed or deleted. The mnemonics for these reason codes are
provided in the AMX header file CJZZZSD.H.

Upon entry to the Task Termination Procedure, the following conditions exist:

Interrupts are enabled.
All registers are free for use.
A reason code is provided as a parameter.
(see cjtkterm description in Chapter 18)
The task's stack in effect at the time of the termination request is in use.

The Task Termination Procedure must return to AMX. It must not call procedure
cjtkend to end task execution.

#include "CJZZZ.H" /* AMX Headers */

void CJ_CCPP termproc(/* Task Termination Procedure*/
CJ_ID taskid, /* Task id of the task being*/

/* terminated */
int reason) /* Termination reason */
{

switch(reason) {

case CJ_KCCFSTOP:
:
Stop task is occurring
:
break;

case CJ_KCCFKILL:
:
Kill task is occurring
:
break;

case CJ_KCCFDEL:
:
Delete task is occurring
:
break;

} /* end of switch */
}

144 KADAK Advanced Topics

Termination Processing

AMX will only stop or kill a task which is running, waiting or ready to execute. A task
can be deleted if it is in any of these states or idle. Occasionally, a request to terminate a
task will occur while that task is performing some operation which AMX deems to be
critical. When this occurs, AMX allows the task to complete the critical operation and
then forces the abnormal termination. AMX does this so that none of its private
resources, such as message envelopes, are corrupted or lost.

When a task is stopped or killed, AMX makes sure that a task which was waiting for a
message acknowledgement from the task being terminated, resumes and is not left
blocked forever.

Deleting a task is a complex operation. AMX must make certain that the task is not
deleted until all currently active transactions involving that task have been completed.
For example, high priority Task A may be deleting medium priority Task B just as low
priority Task C was interrupted in its attempt to trigger Task B. The task trigger must be
allowed to complete in order that AMX task status not be compromised.

AMX meets these stringent requirements by requiring that you specify the priority at
which a task is to be deleted. The task deletion priority must be below that of all other
tasks with which it interacts but above any compute bound tasks which you may have.
AMX drops the task to its deletion priority which forces all other tasks with which the
task can interact to complete any outstanding operations before the deletion takes place.
AMX then deletes the task.

Once a request to delete a task has been made, no new transactions involving the deleted
task can occur. Any attempt to reference a task which has been marked for deletion will
produce a CJ_ERTKID error indication since the deleted task no longer exists as far as you
are concerned. The actual task deletion may be delayed by AMX until current
transactions involving the task can be completed.

Termination Warning

When AMX stops, kills or deletes a task, it does not release any of the system resources
which that task may have within its control. Any interval timers, semaphores, event
groups, mailboxes, message exchanges, buffers or memory blocks which the task has
reserved must be released by the task's Task Termination Procedure when it is called by
AMX.

Advanced Topics KADAK 145

14.5 Task Suspend/Resume
Some operating systems permit a task to suspend any task, including itself. This feature
is then used to implement the equivalent of the AMX task wait procedure cjtkwait.

The ability to arbitrarily suspend a task is one of the most abused privileges afforded by
other operating systems. The AMX philosophy is to encourage well structured task
designs using the wide range of task synchronization facilities offered by AMX in which
there is rarely the need for an uncontrolled task suspension. In most cases, a modification
to your system design can eliminate the apparent need to arbitrarily suspend a task.

To facilitate porting system designs from other operating systems to AMX, the
procedures cjtksuspend and cjtkresume are provided.

Any Restart Procedure, task, ISP, Timer Procedure or Exit Procedure can suspend any
task in the system except the AMX Kernel Task. The task remains suspended until some
task, ISP or Timer Procedure calls cjtkresume to force resumption of that task.

If a task is blocked (waiting for a task trigger or in any AMX wait state) at the time it is
suspended, the task will remain blocked (suspended) until a cjtkresume call attempts to
let the task resume. If, while the task was suspended, the blocking conditions were
removed, the task will resume (start) at the point at which it was blocked.

Note

Do not use cjtksuspend and cjtkresume for
synchronization.

For task synchronization, see Chapter 3.6.
For ISP synchronization, see Chapter 4.4.

146 KADAK Advanced Topics

14.6 Message Exchange Tasks
A careful analysis of a large number of real-time multitasking applications shows that
most include many message driven tasks, each with its own private message exchange.
The tasks are often coded as illustrated in the following example. The task creates a
message exchange and waits on it forever, processing each message that arrives at the
exchange.

#include "CJZZZ.H" /* AMX Headers */

void CJ_CCPP usertask(void)
{

CJ_ID exchgid; /* Message exchange id */
struct cjxmsg msg; /* AMX message */

/* Create a message exchange*/
if (cjmxcreate(&exchgid, "TKMX", 5, 10, 10, 0) == CJ_EROK) {

for (;;) { /* Wait for message */
/* Wait at priority 0 forever*/

cjmxwait(exchgid, &msg, 0, 0);

userfunc(&msg); /* Pass to real task */

}
}

}

Recognizing this need, AMX offers the concept of a message exchange task which has a
private message exchange tied directly to the task. The task and its private message
exchange can be predefined in your AMX System Configuration Module. Using the
Configuration Manager, you simply define the message queue depths for the task's
message exchange as described in Chapter 15.5. The task and its private message
exchange are then created automatically by AMX during the system startup.

A task and its private message exchange can also be created by you dynamically at run
time. You use AMX procedure cjtkbuild or cjtkcreate to create the task and
procedure cjmxbuild or cjmxcreate to create the message exchange. Then you call
AMX procedure cjtkmxinit to tie the two together. The task must be created as
illustrated in the example given in the description of cjtkmxinit in Section 3.

You must NOT trigger a message exchange task. AMX automatically triggers the task
when the message exchange is attached to the task at startup or by your call to
cjtkmxinit.

Advanced Topics KADAK 147

Standard AMX tasks do not receive any parameters when they are started at their entry
point by AMX in response to a task trigger. However, a message exchange task receives
an AMX message on the task's stack ready to be processed by the task.

How then are messages sent to such a task? Since the task's message exchange is a
standard AMX message exchange, the message transmission process is exactly as
described in Chapters 3.9 and 9. Any Restart Procedure, Exit Procedure, ISP, task or
Timer Procedure can send a message to the task as long as it knows the task's message
exchange id. A call to AMX procedure cjtkmxid will, given a task id, provide the
message exchange id for that task if one exists.

Special care must be taken when terminating message exchange tasks. To stop such a
task, you still use procedure cjtkstop. However, to kill or delete such a task, you must
use the extended AMX task termination procedures cjtkxkill and cjtkxdelete
respectively. These procedures ensure that when a task with a task exchange is killed or
deleted, its message exchange is flushed and that all tasks, if any, waiting for message
acknowledgement are allowed to resume with an answer-back status of CJ_WRTKFLUSH.

Note

You must configure your AMX system to include enough
message exchanges to allow one exchange to be allocated
for each message exchange task which you need.

Example See the description of procedure cjtkmxinit in Section 3.

148 KADAK Advanced Topics

This page left blank intentionally.

AMX System Configuration KADAK 149

15. AMX System Configuration

15.1 System Configuration Module
The AMX System Configuration Module defines the characteristics of your AMX
system. The AMX Configuration Builder, described in Chapter 15.2, will create this
module for you.

The System Configuration Module includes the following components.

The User Parameter Table provides AMX with the following information pertinent to
the system you are creating.

Maximum number of tasks Number of message envelopes
Maximum number of timers Message size
Maximum number of semaphores Kernel and Interrupt Stack sizes
Maximum number of event groups Clock frequency
Maximum number of mailboxes Time/Date Scheduling Procedure
Maximum number of message exchanges
Maximum number of buffer pools
Maximum number of memory pools

The Restart Procedure List defines all of your Restart Procedures and their order of
execution. The Exit Procedure List defines all of your Exit Procedures and their order
of execution.

If you wish, you can predefine one or more of any of the following components of your
system. The object definition and memory storage, if any, required by AMX for the
component are provided in the System Configuration Module.

Tasks (including message exchange tasks) Mailboxes
Timers Message exchanges
Semaphores (resource or counting) Buffer pools
Event groups Memory pools

If you predefine any of these components, AMX will automatically create them when
your system starts. The id assigned to each of the predefined components will be stored
in unique id variables which are in the System Configuration Module.

If you predefine any tasks, the task stacks for these tasks will be in the System
Configuration Module.

If you predefine any buffer pools, the buffers for these buffer pools will be in the System
Configuration Module.

If you predefine any message exchange tasks, the tasks and their predefined message
exchanges will be defined in the System Configuration Module. The message exchange
tasks will be automatically created and started by AMX when your system is launched.

150 KADAK AMX System Configuration

15.2 System Configuration Builder
The AMX Configuration Builder is a software generation tool which can be used to
create your AMX System Configuration Module. The Builder helps to reduce total
system implementation time by eliminating the manual generation process by which your
System Configuration Module would otherwise have to be produced. The Builder
consists of two components: the Configuration Manager and the Configuration
Generator. The Configuration Manager is an interactive utility which allows you to
define and edit all of the parameters which must be included in your System
Configuration Module to use AMX and its Managers.

The configuration process is illustrated in the block diagram of Figure 15.2-1.

The Configuration Manager lets you define your system to meet your needs. It produces
a text file called a User Parameter File. This file contains a cryptic representation of your
description of your system.

The Configuration Manager is also able to read a User Parameter File allowing you to use
the Configuration Manager to edit the content of a previously defined system description.

For convenience, the Configuration Manager has the ability to directly invoke its own
copy of the Configuration Generator. The Configuration Generator reads your User
Parameter File and uses the information in it to produce a source file called the System
Configuration Module and a text file called the System Documentation Module.

The Configuration Generator uses a file called the System Configuration Template as a
model for your System Configuration Module. This template file is merged with the
information in your User Parameter File to produce your System Configuration Module.

The Configuration Generator also merges a file called the System Documentation
Template with the information in your User Parameter File to produce your System
Documentation Module, a text file summarizing the characteristics of your AMX
configuration.

The C language System Configuration Module must be compiled as described in the
compiler specific chapter of the AMX Tool Guide for inclusion in your AMX system.

If you are not using one of the C compilers supported by KADAK, you may still be able
to use the AMX Configuration Builder by altering the System Configuration Template
File as described in Appendix C.

The Configuration Generator is also available as a separate, stand alone DOS utility.
This utility program can be used within your make files to generate and then compile
your System Configuration Module. Instructions for doing so are provided in the AMX
Tool Guide.

If you are not doing your development on a PC or compatible, you may still be able to
port the Configuration Generator to your development system as described in
Appendix C.

AMX System Configuration KADAK 151

System Documentation
Template File
CJZZZCG.CTD

System
Documentation

Module
File

System Configuration
Template File
CJZZZCG.CT

User Parameter File
SYSCFG.UP

Configuration
Manager

Enter/Edit/View
AMX System Parameters

Configuration
Generator

SYSCFG.CSYSCFG.TXT

System
Configuration
Module
File

Figure 15.2-1 AMX Configuration Building Process

152 KADAK AMX System Configuration

15.3 Using the Builder

Starting the Builder

The AMX Configuration Builder will operate on a PC or compatible running the
Microsoft® Windows® operating system.

The Builder is delivered with the following files.

File Purpose

CJZZZCM .EXE AMX Configuration Manager (utility program)
CJZZZCM .CNT AMX Configuration Manager Help Content File
CJZZZCM .HLP AMX Configuration Manager Help File
CJZZZCG .EXE AMX Configuration Generator (utility program)
CJZZZCG .CT System Configuration Template File
CJZZZCG .CTD System Documentation Template File

When AMX is installed on your hard disk, the AMX Configuration Manager for
Windows utility program and its related files are stored in directory CFGBLDW in your
AMX installation directory. To start the Configuration Manager, double click on its
filename, CJZZZCM.EXE. Alternatively, you can create a Windows shortcut to the
manager's filename and then simply double click the shortcut's icon.

To create a new User Parameter File, select New User Parameter File from the File menu.
The Configuration Manager will create a new, as yet unnamed, file using its default
AMX configuration parameters. When you have finished defining or editing your system
configuration, select Save As... from the File menu. The Configuration Manager will save
your User Parameter File in the location which you identify using the filename which you
provide.

To open an existing User Parameter File, say SYSCFG.UP, select Open... from the File
menu and enter the file's name and location or browse to find the file. When you have
finished defining or editing your system configuration, select Save from the File menu.
The Configuration Manager will rename your original User Parameter File to be
SYSCFG.BAK and create an updated version of the file called SYSCFG.UP.

To direct the Configuration Manager to use its Configuration Generator utility to produce
an updated copy of your System Configuration Module, say SYSCFG.C, select Generate...
from the File menu.

The Configuration Manager can also be directed to use its Configuration Generator utility
to produce a System Documentation Module, say SYSCFG.TXT, a text file summarizing
the characteristics of your AMX configuration. Select Document... from the File menu.

Note

AMX configuration constants (minimums, maximums,
limits, etc.) are provided in the processor specific AMX
Target Guide.

AMX System Configuration KADAK 153

Screen Layout

Figure 15.3-1 illustrates the Configuration Manager's screen layout. The title bar
identifies the User Parameter File being created or edited. Below the title bar is the menu
bar from which the operations you wish the Manager to perform can be selected. Below
the menu bar is an optional Toolbar with buttons for many of the most frequently used
menu commands.

At the bottom of the screen is the status bar. As you select menu items, a brief
description of their purpose is displayed in the status bar. If the Configuration Manager
encounters an error condition, it presents an error message on the status bar describing
the problem and, in many cases, the recommended solution.

Along the left margin of the screen are a set of one or more selector icons. These icons
identify the type of output files which the Manager's Configuration Generator will
produce. The System Configuration Module selector must be active to generate the
System Configuration Module and its related documentation file.

The center of the screen is used as an interactive viewing window through which you can
view and modify your system configuration parameters.

Figure 15.3-1 Configuration Manager Screen Layout

154 rev10 KADAK AMX System Configuration

Menus

All commands to the Configuration Manager are available as items on the menus present
on the menu bar. The File menu provides the conventional New, Open, Save and
Save As... commands for creating and editing your User Parameter File. It also provides
the Exit command.

 When the System Configuration Module selector icon is the currently active selector, the
Generate... command on the File menu can be used to generate your System Configuration
Module and the File, Document... command can be used to generate your System
Documentation Module. The paths to the template files required by the generator to
create these products can be defined using the Templates... command on the File menu.

The Edit menu provides the conventional Cut, Copy, Paste and Undo editing commands.
It also includes an Undo Page command to restore the content of all fields on a property
page to undo a series of unwanted edits to the page. The Toolbar is hidden or made
visible using the View Toolbar command on the Edit menu.

The Help menu provides access to the complete AMX Configuration Manager reference
manual. Context sensitive help is also available by pressing the F1 function key or
clicking the ? button on the Toolbar.

Field Editing

When the System Configuration Module selector icon is the currently active selector, the
System Configuration Module's tabbed property sheet is displayed in the central region of
the screen. Each tab provides access to a particular property page through which your
system configuration parameters can be declared. For instance, if you select the Tasks
tab, the Configuration Manager will present a task definition window (property page)
containing all of the parameters you must provide to completely define a task.

Some fields are boolean options in which all you can do is turn the option on or off by
checking or unchecking the associated check box.

Some fields are option fields in which you must select one of a set of options identified
with radio buttons. Click on the option button which meets your preference.

Other fields may require numeric or text entry. Parameters are entered or edited in these
fields by typing new values or text to replace the current field content. Only displayable
characters can be entered. New characters which you enter are inserted at the current
cursor position in the field. Right and left arrow, backspace and delete keys may be used
to edit the field.

When you are altering a numeric or text field, you tell the Configuration Manager that
you are finished editing the field by striking the Enter key. At that point, the
Configuration Manager checks the numeric value or text string that you have entered for
correctness in the context of the current field. If the value or text string that you have
entered is invalid, an error indication is provided on the status bar at the bottom of the
screen suggesting how the fault should be corrected.

The Tab and Shift-Tab keys can also be used to complete the editing of a field and move to
the next or previous field.

AMX System Configuration KADAK 155

If you have modified some of the fields on a property page and then decide that these
modified values are not correct, use the Undo Page command on the Edit menu or Toolbar
to force the Configuration Manager to restore the content of all fields on the page to the
values which were in effect when you moved to that property page.

When you go to save your User Parameter File or prepare to move to another property
page, the Configuration Manager will validate all parameters on the page which you are
leaving. If any parameters are incomplete or inconsistent with each other, you will be
forced to fix the problem before being allowed to proceed.

Add, Edit and Delete AMX Objects

Separate property pages are provided to allow your definition of one or more AMX
objects such as tasks and timers which will be prebuilt by AMX when AMX is launched.
The maximum allowed quantities of each type of AMX object are defined by you on the
Objects property page.

Pages of this type include a list box at the left side of the property page in which the
currently defined objects are listed. At the bottom of the list box is a counter showing the
number of objects in the list and the allowable maximum number of objects as defined on
the Objects property page.

Also below the list are two control buttons labeled Add and Delete. If the allowable
maximum number of objects is 0 or if all such objects have already been defined, the Add
button will be disabled. If there are no objects defined, the Delete button and all other
fields on the page will be disabled.

To add a new object, click on the Add button. A new object named ---- will appear at
the bottom of the list and will be opened ready for editing. When you enter a valid tag
for the object, the tag will replace the name ---- in the object list.

To edit an existing object's definition, double click on the object's name in the object list.
The current values of all of that object's parameters will appear in the property page and
the object will be opened ready for editing.

To delete an existing object, click on the object's name in the object list. Then click on
the Delete button. Be careful because you cannot undo an object deletion.

The objects in the object list can be rearranged by dragging an object's name to the
desired position in the list. You cannot drag an object directly to the end of the list. To
do so, first drag the object to precede the last object on the list. Then drag the last object
on the list to precede its predecessor on the list.

Tasks are ordered in their object list by task priority. The highest priority task resides at
the top of the list. Tasks cannot be rearranged in their list by dragging the object. To do
so, change the task's priority.

156 KADAK AMX System Configuration

15.4 System Parameter Definition
The System Parameter window allows you to define the general operating parameters of
your AMX system. The layout of the window is shown in Figure 15.3-1 in Chapter 15.3.

Kernel Options

AMX Message Envelopes

AMX passes a message to a mailbox or message exchange in a message envelope. The
application parameters which form the message are copied into the envelope and added to
the mailbox or message exchange.

The number of message envelopes required by your application must be defined. The
upper limit of the maximum number of envelopes is target dependent. The minimum
number of envelopes is CJ_MINKG bytes. For each of these message envelopes, the
Builder will allocate storage for private AMX use.

Unfortunately, no hard and fast rule can be provided to determine the number of message
envelopes needed. For simple systems with little message queuing and few tasks
executing concurrently, the number of required message envelopes can range from one to
twice the number of tasks in the system. More complex systems with significant queuing
requirements may require many more envelopes.

AMX Message Size

The maximum size of the message to be passed in a message envelope must also be
defined by you. If you enter a size of 0, the Manager will report the minimum allowed.
The minimum buffer size is CJ_MINMSZ bytes. The message size must be a multiple of 4.

If you change the message size from its default value, you must edit the definition of
CJ_MAXMSZ in AMX header file CJZZZAPP.H to reflect your new message size. Be sure to
recompile all application modules which manipulate messages.

AMX Kernel Stack Size

The AMX Kernel Task requires a minimum Kernel Stack size which depends on your
target processor. If you enter a size of 0, the Manager will report the minimum allowed.
The minimum Kernel Stack size is CJ_MINKS bytes. The stack size must be a multiple of
4 bytes.

In addition to this minimum, you must allocate sufficient stack to satisfy the worst case
requirements of all application Restart Procedures and Timer Procedures. If you have
any nonconforming ISPs, you must increase the Kernel Stack size to meet the interrupt
overhead expected.

AMX System Configuration KADAK 157

AMX Interrupt Stack Size

The AMX Interrupt Supervisor requires a minimum Interrupt Stack size which depends
on your target processor. If you enter a size of 0, the Manager will report the minimum
allowed. The minimum Interrupt Stack size is CJ_MINIS bytes. The stack size must be a
multiple of 4 bytes.

In addition to this minimum, you must allocate sufficient stack to satisfy the application
ISP with the greatest stack usage. If nested interrupts are possible, then the worst case
interrupt nesting must be analyzed and additional interrupt stack allocated.

AMX and Managers in Separate ROM

AMX and its managers can be installed in a private ROM and accessed by your
application via the AMX ROM access module. If you are using AMX this way, check
this box.

If you are linking your application with AMX and its managers, leave this box unchecked
even if you are going to burn your linked AMX system into a ROM.

158 KADAK AMX System Configuration

Timing Options

Hardware Clock Frequency

This parameter defines the frequency of the AMX hardware clock in hertz. It is used by
AMX to convert milliseconds to equivalent AMX system ticks. If your hardware clock
frequency is not integral, round the clock frequency to the nearest non-zero integer.

AMX Clock Conversion Factor

The AMX system tick is measured in multiples of hardware clock interrupts. This
parameter specifies the number of hardware clock interrupts required for each system
tick. For example, a 100 Hz clock will generate interrupts at 10 millisecond intervals. If
a 50 ms system tick is required, then this parameter must be set to 5.

Time Slicing Required

If you wish to allow tasks which share a priority level to be time sliced, check this box.
Leave this box unchecked if time slicing of tasks is not required.

If time slicing has been enabled and a task has been defined to have a non-zero time slice,
you will not be able to remove the check from this box. You must first set the time slice
value for all defined tasks to 0. Then you will be able to remove the check from this box,
thereby disabling time slicing.

Use Time/Date Manager

If you wish to include the Time/Date Manager, check this box. Otherwise leave the box
unchecked. Be sure to increase the maximum number of timers in your system by one to
account for the AMX Time/Date timer.

Scheduling Procedure Name

If you use the Time/Date Manager, then you may wish to define a Time/Date Scheduling
Procedure (see Chapter 5.5). This parameter defines that procedure name. If no
procedure is required, leave this field empty (blank).

This field is ignored if the Use Time/Date Manager check box is unchecked.

AMX System Configuration KADAK 159

15.5 AMX Object Allocation
The AMX Object Allocation window allows you to define the number of private AMX
objects required for each of the optional AMX managers to be included in your system.
The layout of the window is shown below.

Maximum Number of Tasks

This parameter defines the maximum number of application tasks which your system can
support concurrently. The value for this parameter should be the number of predefined
tasks (see Chapter 15.7) plus the maximum number of tasks that you will dynamically
create using cjtkbuild or cjtkcreate. You do not have to account for the AMX
Kernel Task.

Maximum Number of Timers

This parameter defines the maximum number of timers which your system can support
concurrently. If you do not require any timers, set this parameter to 0. Otherwise, this
parameter should be set to the number of predefined timers (see Timer Definition
Window) plus the maximum number of timers that you dynamically create using
cjtmbuild or cjtmcreate.

160 KADAK AMX System Configuration

Maximum Number of Semaphores

This parameter defines the maximum number of resource and counting semaphores
which your system can support concurrently. If you do not require any semaphores, set
this parameter to 0. Otherwise, the parameter should be set to the number of predefined
semaphores (see Semaphore Definition Window) plus the maximum number of resource
or counting semaphores that you will dynamically create using cjrmbuild, cjrmcreate,
cjsmbuild or cjsmcreate.

Maximum Number of Event Groups

This parameter defines the maximum number of event groups which your system can
support concurrently. If you do not require any event groups, set this parameter to 0.
Otherwise, the parameter should be set to the number of predefined event groups (see
Event Group Definition Window) plus the maximum number of event groups that you
will dynamically create using cjevbuild or cjevcreate.

Maximum Number of Mailboxes

This parameter defines the maximum number of mailboxes which your system can
support concurrently. If you do not require any mailboxes, set this parameter to 0.
Otherwise, the parameter should be set to the number of predefined mailboxes (see
Mailbox Definition Window) plus the maximum number of mailboxes that you will
dynamically create using cjmbbuild or cjmbcreate.

Maximum Number of Message Exchanges

This parameter defines the maximum number of message exchanges which your system
can support concurrently. If you do not require any message exchanges, set this
parameter to 0. Otherwise, the parameter should be set to the number of predefined
message exchanges (see Message Exchange Definition Window) plus the maximum
number of message exchanges that you will dynamically create using cjmxbuild or
cjmxcreate.

You must also account for the private message exchanges which will be needed for the
message exchange tasks, if any, that you intend to predefine or dynamically create.

Maximum Number of Buffer Pools

This parameter defines the maximum number of buffer pools which your system can
support concurrently. If you do not require any buffer pools, set this parameter to 0.
Otherwise, the parameter should be set to the number of predefined buffer pools (see
Buffer Pool Definition Window) plus the maximum number of buffer pools that you will
dynamically create using cjbmbuild or cjbmcreate.

Maximum Number of Memory Pools

This parameter defines the maximum number of memory pools which your system can
support concurrently. If you do not require any memory pools, set this parameter to 0.
Otherwise, the parameter should be set to the number of predefined memory pools (see
Memory Pool Definition Window) plus the maximum number of memory pools that you
will dynamically create using cjmmbuild or cjmmcreate.

AMX System Configuration KADAK 161

15.6 Restart/Exit Procedure Definition
The Launch/Shutdown window displays all of your application Restart and Exit
Procedures which will be called by AMX at system startup and shutdown. The layout of
the window is shown below.

The Restart Procedure List is used to define all of your application Restart Procedures
which will be called by AMX at system startup. The Restart Procedures will be called by
AMX in the order in which they appear in the list.

The Exit Procedure List is used to define all of your application Exit Procedures which
will be called by AMX at system shutdown. The Exit Procedures will be called by AMX
in the order in which they appear in the list.

162 KADAK AMX System Configuration

Add, Edit and Delete Restart and Exit Procedures

To add a new procedure, click on the Add button below the list. A new procedure named
---New--- will appear at the bottom of the list. Click on the name ---New--- and it will
be opened ready for editing. Enter the name of your procedure.

To edit an existing procedure's name, double click on the name in the object list. The
name will be opened ready for editing.

To delete an existing procedure, click on the procedure's name in the object list. Then
click on the Delete button below the list. Be careful because you cannot undo a deletion.

The procedure names in the object list can be rearranged by dragging a procedure's name
to the desired position in the list. You cannot drag a procedure directly to the end of the
list. To do so, first drag the procedure name to precede the last name on the list. Then
drag the last name on the list to precede its predecessor on the list.

Note

The Restart and Exit Procedures for all AMX Managers
will be automatically provided by the Configuration
Manager. You MUST NOT repeat them in your list of
application Restart or Exit Procedures.

AMX System Configuration KADAK 163

15.7 Task Definition
The Task Definition window allows you to define the tasks to be automatically created by
AMX at system startup. You do not have to predefine all of your tasks in this manner;
you may also create tasks dynamically using cjtkbuild or cjtkcreate. The layout of
the window is shown below.

164 KADAK AMX System Configuration

Task Tag

Each task can have a unique 4-character task tag. This parameter defines that tag.
Although AMX does not restrict the content of the task tag field, the Configuration
Manager only supports 4 ASCII characters as a tag.

Priority

This parameter defines the execution priority of the task. Application task priorities
range from 1 (highest) to 127 (lowest). More than one task can be given the same task
priority. Unless the task is time sliced, AMX will assign relative task priorities according
to the order in which the task definitions appear on the screen.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the task id of the task.

Task Procedure Name

This parameter defines the name of the procedure to be called when AMX starts the task.

Stack & TCB Size

Each application task requires a block of RAM storage for use as a stack and Task
Control Block (TCB). The block size depends on your target processor. If you enter a
size of 0, the Manager will report the minimum allowed. The minimum block size is
CJ_MINTKS bytes. In addition to this minimum, you must allocate sufficient stack to
satisfy the worst case requirements of the task. The stack size parameter must be a
multiple of 4 bytes.

If your task installs its own task trap handlers (see Chapter 4.5), increase your task's stack
by sizeof(struct cjxregs) bytes.

If you have any nonconforming ISPs, you must increase the stack size of all tasks to meet
the needs of these ISPs.

Time Slice

If the task is to be time sliced, you may specify the time slice interval in the task
definition. If time slicing is not required, set this parameter to 0.

This field will be disabled unless you have enabled the AMX time slice option by
checking the Time Slicing Required box on the System Parameter Window.

Time slicing is only effective if the task will be compute bound in competition with other
tasks of equal priority.

The task's time slice may also be altered dynamically by calling cjtmslice when your
system is running.

AMX System Configuration KADAK 165

Message Exchange Task

AMX allows creation of a message exchange task (see Chapter 14.6) for which a private
message exchange is allocated. To declare a task of this type, check this box and fill in
the required queue depths for the task's private message exchange. Otherwise leave the
box unchecked.

Queue Depths

These four parameters define the maximum number of message envelopes which can
reside in each of the four message queues of the task's private message exchange. Queue
0 is the highest priority queue; queue 3 is the lowest priority.

Depths may range from 0 to 32767. The maximum depth of a queue does not affect
AMX memory requirements. If a particular message queue is to be unused, set its depth
to zero. At least one message queue depth must be non-zero if the task is to be defined as
a message exchange task.

The message exchange's tag is the same as the task's tag. AMX stores the id of the task's
message exchange in an id variable with name YOURTASKID_mx, where YOURTASKID is the
name you entered for the task's id variable.

Message Passed By

This option defines whether the message exchange task will receive its messages by
reference or by value.

When a message is passed by reference, the task receives a pointer to a copy of the AMX
message stored on the task's stack.

When a message is passed by value, the task receives the AMX message as a cjxmsg
structure passed by value according to the parameter passing conventions of the C
compiler being used.

166 KADAK AMX System Configuration

15.8 AMX Object Definitions

Timer Definition
The Timer Definition window allows you to define the timers to be automatically created
by AMX at system startup. You do not have to predefine all of your timers in this
manner; you may also create timers dynamically using cjtmbuild or cjtmcreate. Note
that AMX does not automatically start timers defined this way. Your application must
call cjtmwrite to actually start the timer. The layout of the window is shown below.

AMX System Configuration KADAK 167

Tag

Each timer can have a unique 4-character timer tag. This parameter defines that tag.
Although AMX does not restrict the content of the timer tag field, the Configuration
Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the timer id of the timer.

Timer Procedure Name

This parameter defines the name of the Timer Procedure to be called whenever the timer
expires.

Timer Parameter Name

This parameter defines the name of a public pointer variable whose address will be
passed as a parameter to the Timer Procedure. If your timer does not require such a
parameter, leave this field empty (blank).

If you enter the name tmrparam, the pointer variable tmparam will be declared as follows
in the System Configuration Module:

extern void * tmrparam;

Your Timer Procedure will then receive &tmrparam as its parameter.

Period

If the timer is a periodic timer, this parameter defines its period in multiples of AMX
system ticks. If the timer is a one-shot timer, this parameter must be set to 0.

168 rev9 KADAK AMX System Configuration

Semaphore Definition
The Semaphore Definition window allows you to define the semaphores to be
automatically created by AMX at system startup. You do not have to predefine all of
your semaphores in this manner; you may also dynamically create resource semaphores
using cjrmbuild, cjrmcreate or cjrmcreatex and counting semaphores using
cjsmbuild or cjsmcreate. The layout of the window is shown below.

AMX System Configuration KADAK rev9 169

Tag

Each semaphore can have a unique 4-character semaphore tag. This parameter defines
that tag. Although AMX does not restrict the content of the semaphore tag field, the
Configuration Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the semaphore id of the semaphore.

Type

This option field defines the type of semaphore to be created, Basic Resource,
Inheritance Resource, Counting or Bounded.

Initial Value

Counting semaphores may be given an initial value between 0 and 16383. This field is
ignored for all semaphore types other than counting semaphores.

Upper Limit

Bounded semaphores may be given an upper limit between 1 and 16383. When a
bounded semaphore is created, it will be assigned an initial value of 0. This field is
ignored for all semaphore types other than bounded semaphores.

170 KADAK AMX System Configuration

Event Group Definition
The Event Group Definition window allows you to define the event groups to be
automatically created by AMX at system startup. You do not have to predefine all of
your event groups in this manner; you may also create event groups dynamically using
cjevbuild or cjevcreate. The layout of the window is shown below.

AMX System Configuration KADAK 171

Tag

Each event group can have a unique 4-character event group tag. This parameter defines
that tag. Although AMX does not restrict the content of the event group tag field, the
Configuration Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the event group id of the event group.

Initial Value

This parameter defines the initial value of the 16 or 32 event flags in the event group.
This parameter must be entered as 0 or as an unsigned hexadecimal number of the form
0xdddddddd.

172 KADAK AMX System Configuration

Mailbox Definition
The Mailbox Definition window allows you to define the mailboxes to be automatically
created by AMX at system startup. You do not have to predefine all of your mailboxes in
this manner; you may also create mailboxes dynamically using cjmbbuild or
cjmbcreate. The layout of the window is shown below.

AMX System Configuration KADAK 173

Tag

Each mailbox can have a unique 4-character mailbox tag. This parameter defines that
tag. Although AMX does not restrict the content of the mailbox tag field, the
Configuration Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the mailbox id of the mailbox.

Queue Depth

This parameter defines the maximum number of message envelopes which can reside in
the mailbox message queue. Depths may range from 1 to 32767. The maximum depth
for a mailbox does not affect AMX memory requirements.

174 KADAK AMX System Configuration

Message Exchange Definition
The Message Exchange Definition window allows you to define the message exchanges
to be automatically created by AMX at system startup. You do not have to predefine all
of your message exchanges in this manner; you may also create message exchanges
dynamically using cjmxbuild or cjmxcreate. The layout of the window is shown
below.

AMX System Configuration KADAK 175

Tag

Each message exchange can have a unique 4-character message exchange tag. This
parameter defines that tag. Although AMX does not restrict the content of the message
exchange tag field, the Configuration Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the message exchange id of the message
exchange.

Message Queue Depths

These four parameters define the maximum number of message envelopes which can
reside in each of the four message queues of the message exchange. Message queue 0 is
the highest priority queue; queue 3 is the lowest priority.

Depths may range from 0 to 32767. If a particular message queue for a message
exchange is to be unused, set its depth to zero. Other message queues may still be used.
At least one message queue must be used. The maximum depth for a message queue
does not affect AMX memory requirements.

176 KADAK AMX System Configuration

Buffer Pool Definition
The Buffer Pool Definition window allows you to define the buffer pools to be
automatically created by AMX at system startup. You do not have to predefine all of
your buffer pools in this manner; you may also create buffer pools dynamically using
cjbmbuild or cjbmcreate. The layout of the window is shown below.

AMX System Configuration KADAK 177

Tag

Each buffer pool can have a unique 4-character buffer pool tag. This parameter defines
that tag. Although AMX does not restrict the content of the buffer pool tag field, the
Configuration Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the buffer pool id of the buffer pool.

Buffer Size

This parameter defines the useable size (in bytes) of each buffer in the buffer pool. If you
enter a size of 0, the Manager will report the minimum allowed. The minimum buffer
size is CJ_MINBFS bytes. The buffer size must be a multiple of 4.

Number of Buffers

This parameter defines the total number of buffers to be available in this buffer pool. The
pool must contain at least one buffer.

178 KADAK AMX System Configuration

Memory Pool Definition
The Memory Pool Definition window allows you to define the memory pools to be
automatically created by AMX at system startup. You do not have to predefine all of
your memory pools in this manner; you may also create memory pools dynamically using
cjmmbuild or cjmmcreate. The layout of the window is shown below.

AMX System Configuration KADAK 179

Tag

Each memory pool can have a unique 4-character memory pool tag. This parameter
defines that tag. Although AMX does not restrict the content of the memory pool tag
field, the Configuration Manager only supports 4 ASCII characters as a tag.

Id Variable

This parameter defines the name of a public variable of type CJ_ID in the System
Configuration Module in which AMX will save the memory pool id of the memory pool.

Memory Pool Pointer

This parameter defines the location of the memory to be assigned to the memory pool as
a memory section. The location may be specified as the name of an external static
character array variable of appropriate size and alignment (see cjmmsection description
in Section 3).

Alternatively, an absolute hexadecimal address of the form 0xdddddddd can be used to
specify an explicit RAM address.

If this parameter is left blank, then the memory pool will be created by AMX but will
have no memory for allocation until your application calls cjmmsection to assign one or
more memory sections to the pool. If you leave this parameter blank, you must set the
memory pool size to 0.

Memory Pool Size

This parameter defines the useable size (in bytes) of the memory section provided for the
pool. If you enter a size of 1, the Manager will report the minimum allowed. The
minimum memory pool size is CJ_MINSMEM bytes. The memory pool size must be a
multiple of 4.

If the memory pool pointer is blank, the memory pool size must be set to 0.

180 KADAK AMX System Configuration

This page left blank intentionally.

AMX Target Configuration KADAK 181

16. AMX Target Configuration

16.1 Target Configuration Module
The AMX Target Configuration Module defines the processor dependent hardware
characteristics of your AMX system. The AMX Configuration Builder will create this
module for you. This is the same tool used to create your AMX System Configuration
Module (see Chapter 15.2).

The Target Configuration Module includes the following components.

The Hardware Definition Table provides AMX with all of the hardware specific
information pertinent to the target processor which AMX requires for its proper
operation. Most of the parameters in this table are predefined by KADAK. Some of the
parameters may have to be defined by you to select the particular hardware features
which you wish AMX to support in your AMX application. Such target dependent
parameters are identified in each of the AMX Target Guides.

The Target Configuration Module includes the AMX exception trap handlers for all of
the processor exceptions (interrupts) for which AMX is to be responsible.

The Target Configuration Module also includes the clock ISP root for the hardware
clock interrupt to be used by AMX to derive its system tick. This ISP root can be one of
the default clock ISPs provided with AMX or a custom clock ISP of your own making.

All conforming ISPs are located in the Target Configuration Module. The module must
include an ISP root for each conforming device interrupt which your application intends
to support. You must declare an ISP root for each device having an Interrupt Handler
which expects to call AMX service procedures.

Note

The AMX Configuration Builder can be used to create your
Target Configuration Module. Since this module varies
significantly for each target processor, detailed instructions
for using the Builder are provided in the target specific
AMX Target Guide.

182 KADAK AMX Target Configuration

16.2 Target Configuration Generation
The AMX Configuration Builder is a software generation tool which can be used to
create your AMX Target Configuration Module. The Builder helps to reduce total
system implementation time by eliminating the manual generation process by which your
Target Configuration Module would otherwise have to be produced. The Builder
consists of two components: the Configuration Manager and the Configuration
Generator. The Configuration Manager is an interactive utility which allows you to
define and edit all of the parameters which must be included in your Target Configuration
Module to use AMX on your partiular hardware platform.

The configuration process is illustrated in the block diagram of Figure 16.2-1.

The Configuration Manager lets you define your system to meet your needs. It produces
a text file called a Target Parameter File. This file contains a cryptic representation of
your description of your target hardware.

The Configuration Manager is also able to read a Target Parameter File allowing you to
use the Configuration Manager to edit the content of a previously defined target
description.

For convenience, the Configuration Manager has the ability to directly invoke its own
copy of the Configuration Generator. The Configuration Generator reads your Target
Parameter File and uses the information in it to produce a source file called the Target
Configuration Module.

The Configuration Generator uses a file called the Target Configuration Template as a
model for your Target Configuration Module. This template file is merged with the
information in your Target Parameter File to produce your Target Configuration Module.

The assembly language Target Configuration Module must be assembled as described in
the toolset specific chapter of the AMX Tool Guide for inclusion in your AMX system.

If you are not using one of the toolsets supported by KADAK, you may still be able to
use the AMX Configuration Builder by altering the Target Configuration Template File
to meet the operating characteristics of your particular assembler.

The Configuration Generator is also available as a separate, stand alone DOS utility.
This utility program can be used within your make files to generate and then assemble
your Target Configuration Module. Instructions for doing so are provided in the AMX
Tool Guide.

If you are not doing your development on a PC or compatible, you may still be able to
port the Configuration Generator to your development system as described in
Appendix C.

AMX Target Configuration KADAK 183

Target Configuration
Template File
CJZZZHDW.CT

Target Parameter File
HDWCFG.UP

Configuration
Manager

Enter/Edit/View
Target Hardware Parameters

Configuration
Generator

HDWCFG.ASM

Target
Configuration
Module
File

Figure 16.2-1 AMX Target Configuration Generation

184 KADAK AMX Target Configuration

Using the Builder

The AMX Configuration Builder will operate on a PC or compatible running the
Microsoft® Windows® operating system.

The Builder is delivered with the following files.

File Purpose

CJZZZCM .EXE AMX Configuration Manager (utility program)
CJZZZCM .CNT AMX Configuration Manager Help Content File
CJZZZCM .HLP AMX Configuration Manager Help File
CJZZZCG .EXE AMX Configuration Generator (utility program)
CJZZZHDW.CT Target Configuration Template File

When AMX is installed on your hard disk, the AMX Configuration Manager for
Windows utility program and its related files are stored in directory CFGBLDW in your
AMX installation directory. To start the Configuration Manager, double click on its
filename, CJZZZCM.EXE. Alternatively, you can create a Windows shortcut to the
manager's filename and then simply double click the shortcut's icon.

To create a new Target Parameter File, select New Target Parameter File from the File
menu. The Configuration Manager will create a new, as yet unnamed, file using its
default AMX target parameters. When you have finished defining or editing your target
configuration, select Save As... from the File menu. The Configuration Manager will save
your Target Parameter File in the location which you identify using the filename which
you provide.

A good starting point is to copy one of the Sample Target Parameter Files CJSAMTCF.UP
into file HDWCFG.UP and edit the file to define the requirements of your target hardware.
To open an existing Target Parameter File such as HDWCFG.UP, select Open... from the File
menu and enter the file's name and location or browse to find the file. When you have
finished defining or editing your target configuration, select Save from the File menu.
The Configuration Manager will rename your original Target Parameter File to be
HDWCFG.BAK and create an updated version of the file called HDWCFG.UP.

To direct the Configuration Manager to use its Configuration Generator utility to produce
an updated copy of your Target Configuration Module, say HDWCFG.ASM, select
Generate... from the File menu.

The assembly language Target Configuration Module must be assembled as described in
the toolset specific AMX Tool Guide for inclusion in your AMX system. The assembler
will generate error messages which exactly pin-point any inconsistencies in the
parameters in your Target Parameter File.

Note

Since the Target Configuration Module varies significantly
for each target processor, detailed instructions for using the
Builder are provided in the target specific AMX Target
Guide.

AMX Target Configuration KADAK 185

16.3 Target Parameters
The AMX Configuration Builder can be used to create and edit your Target Parameter
File. Since this file varies significantly for each target processor, a detailed description of
the file is provided in the target specific AMX Target Guide. This chapter provides a
brief introduction to the features which are common to most target processors.

The Target Parameter File is a text file structured as illustrated in Figure 16.3-1. The file
consists of a sequence of keywords of the form ...XXX which begin in column one. Each
keyword is followed by one or more parameters recorded in the file by the Builder.

; Target hardware definitions
;
...HDW PROC,<...>
;
:
;
; AMX launch parameters
:
...LAUNCH PERM[,VNA]
;
:
;
; AMX Clock ISP
:
...CLKxxxx <...>
:
;
;
; Your conforming ISP definitions
:
...ISPA ISPROOT[,STEM],HANDLER,VNUM,PARAM,<...>
...ISPC ISPROOT[,STEM],HANDLER,VNUM,PARAM,<...>

Figure 16.3-1 Target Parameter File

The example in Figure 16.3-1 uses symbolic names for all of the parameters following
each of the keywords. The symbol names are replaced in your Target Parameter File
with the actual parameters needed in your system. Parameters shown as <...> indicate
that other target dependent parameters may be present. Parameters shown as [,xxxx]
will only be present if required for a particular target processor.

The keywords listed in Figure 16.3-1 are present in the Target Parameter File for all
target processors. Other target dependent keywords may exist and, if present, will be
described in the target specific AMX Target Guide.

The order of keywords in the Target Parameter File is not particularly critical. For
convenience, the keywords have been ordered to closely follow the order of the
corresponding entries in your Target Configuration Module.

186 KADAK AMX Target Configuration

The Target Parameter File begins with a set of hardware definitions.

PROC Processor identifier
<...> Other target dependent parameters

The AMX Launch Parameters are defined as follows.

PERM AMX launch is temporary or permanent
[,VNA] AMX Vector Table entries are or are not alterable

The AMX Clock ISP is identified using keyword ...CLKxxxx. If you are using one of
the clock ISPs provided with AMX for use with the target processor, the string xxxx will
identify the particular clock type. The parameter list will provide parameters, if any,
necessary to select the operating characteristics of the selected clock device.

If you choose to provide your own clock driver coded in C, the keyword ...CLKxxxx will
be replaced with ...CLKC. If you choose to provide your own clock driver coded in
assembly language, keyword ...CLKxxxx will be replaced with ...CLKA. In either case,
the parameter list will define your conforming clock ISP root in exactly the same manner
as for all other conforming ISPs.

You must declare a device ISP root for each conforming ISP which you intend to use in
your application. For most AMX implementations, the ISP root is declared using
...ISPC if its Interrupt Handler is coded in C or ...ISPA if its Interrupt Handler is coded
in assembly language. For AMX PPC32, the ISP root is declared using ...ISPC if its ISP
stem is coded in C or ...ISPA if its ISP stem is coded in assembly language. The
parameter list is defined as follows.

ISPROOT Name of the ISP root entry point
[,STEM] Name of the public AMX PPC32 ISP stem
HANDLER Name of the public device Interrupt Handler or of the public

AMX PPC32 ISP Handler
VNUM AMX vector number
PARAM Name of a public variable whose address is to be passed as a

parameter to the Interrupt Handler or to both the ISP stem and
ISP Handler of an AMX PPC32 ISP

<...> Other target dependent parameters

If VNUM is provided, AMX will automatically install the pointer to the ISP root ISPROOT
into the appropriate entry in the Vector Table when AMX is launched. The vector
initialization will be done before any application Restart Procedures are executed. If
VNUM is -1, you must provide a Restart Procedure or task which installs the pointer to the
ISP root ISPROOT into the Vector Table using one of the target specific AMX procedures
cjksivtwr (or cjksivtx) or cjksidtwr (or cjksidtx).

Note that the AMX Configuration Builder unconditionally sets VNUM to -1, leaving it to
your application to install the ISPROOT pointer into the AMX Vector Table.

AMX Service Procedures KADAK 187

17. AMX Service Procedures

17.1 Introduction
The AMX Library provides a wide variety of services from which the real-time system
designer can choose. Many of the services are optional and, if not used, will not even be
present in your final AMX system.

This section of the AMX User's Guide differs from the others because it is intended for
use as a programming guide. The remainder of this chapter introduces you to the AMX
programming environment. Chapter 18 provides descriptions of all of the procedures
which are available in the AMX Runtime Library in alphabetic order for easy reference.

All of the AMX procedures are described using the C programming language. It is
therefore recommended that you be at least superficially familiar with C.

A functional list of procedures is presented in Chapter 17.2. It is recommended that you
use that chapter in conjunction with the procedure descriptions in Chapter 18 as follows.
If you remember a procedure name but require information concerning its operation, go
straight to the procedure description in the alphabetic list of procedures in Chapter 18. If
you know what you wish to do functionally, but cannot remember the procedure name,
go to Chapter 17.2 to quickly locate the procedure and then proceed to Chapter 18 to find
its detailed description.

188 KADAK AMX Service Procedures

17.2 Summary of Services
AMX provides a wide variety of services from which the real-time system designer can
choose. Many of the services are optional and, if not used, will not even be present in
your AMX system. The AMX managers are all optional.

All of AMX and its managers are fully reentrant and may be placed in Read Only
Memory (ROM).

The following lists summarize all of the AMX procedures which are accessible to the
user. They are grouped functionally for easy reference.

Procedures are described in Chapter 18.

System Control Kernel Services (class ks)

cjkserror AMX error or warning to User Error Procedure
cjksfatal AMX Fatal Exit Procedure
cjksfind Find an AMX object with a specific tag
cjksgbfind
cjkshook Install user hooks to AMX Scheduler
cjkslaunch Enter AMX multitasking world
cjksenter
cjksleave Leave AMX multitasking world
cjksexit
cjkspriv Raise or lower task privilege level
cjksver Get AMX version information

AMX Service Procedures KADAK rev9 189

Task Control (class tk)

cjtkbuild Create a new task (using a definition structure)
cjtkcreate Create a new task (using inline parameters)
cjtkdelay Delay for a timed interval
cjtkend End current task execution
cjtkid Get task id of current task
cjtkmsgack Acknowledge receipt of a message
cjtkmxid Get message exchange id for a message exchange task
cjtkmxinit Initialize a message exchange task
cjtkpriority Change a task's execution priority
cjtkpradjust Sense and/or adjust a task's execution priority
cjtkresume Resume a suspended task
cjtkstatus Fetch task status
cjtksuspend Suspend a task
cjtktcb Get the Task Control Block pointer for a task
cjtktrigger Trigger (start) a task
cjtkwait Wait for a wake request
cjtkwaitclr Reset any pending wake requests
cjtkwaitm Timed wait for a wake request
cjtkwake Wake a task

Task Termination Services (class tk)

cjtkdelete Delete a task
cjtkkill Kill a task

Force a task to stop; flush all trigger requests
cjtkstop Force a task to stop
cjtkterm Enable/disable abnormal task termination
cjtkxdelete Delete a message exchange task
cjtkxkill Kill a message exchange task

Force task to stop; flush all trigger requests
Flush all message queues from task's private message exchange

190 rev9 KADAK AMX Service Procedures

Timing Control (class tm)

cjtmbuild Create an interval timer (using a definition structure)
cjtmconvert Convert milliseconds to system ticks
cjtmcreate Create an interval timer (using inline parameters)
cjtmdelete Delete an interval timer
cjtmread Read an interval timer
cjtmslice Change a task's time slice interval
cjtmtick Read elapsed system ticks
cjtmtsopt Enable/disable time slicing
cjtmwrite Start/stop an interval timer

Time/Date Manager (class td)

cjtdfmt Format calendar time/date as an ASCII string
cjtdget Get calendar time/date
cjtdset Set calendar time/date

Semaphore Manager (class rm or sm)

cjrmbuild Create a resource semaphore (using a definition structure)
cjrmcreate Create a basic resource semaphore (using inline parameters)
cjrmcreatex Create an inheritance resource semaphore
cjrmdelete Delete a resource semaphore
cjrmfree Free a resource (unconditional)
cjrmrls Release a resource (nested)
cjrmrsv Reserve a resource (optional timeout)
cjrmstatus Fetch resource semaphore status

cjsmbuild Create a counting semaphore (using a definition structure)
cjsmcreate Create a counting semaphore (using inline parameters)
cjsmdelete Delete a counting semaphore
cjsmsignal Signal to a counting semaphore
cjsmstatus Fetch counting semaphore status
cjsmwait Wait on a counting semaphore (optional timeout)

Event Manager (class ev)

cjevbuild Create an event group (using a definition structure)
cjevcreate Create an event group (using inline parameters)
cjevdelete Delete an event group
cjevread Read current state of events in an event group
cjevsignal Signal one or more events in an event group
cjevstatus Fetch event group status
cjevwait Wait for all/any of a set of events in an event group

(optional timeout)
cjevwaits Get event flags at completion of event wait

AMX Service Procedures KADAK rev9 191

Mailbox Manager (class mb)

cjmbbuild Create a mailbox (using a definition structure)
cjmbcreate Create a mailbox (using inline parameters)
cjmbdelete Delete a mailbox
cjmbflush Flush all messages or tasks from a mailbox
cjmbsend Send a message to a mailbox

(optional wait for acknowledgement)
cjmbstatus Fetch mailbox status
cjmbwait Wait for a message to arrive at a mailbox (optional timeout)

Message Exchange Manager (class mx)

cjmxbuild Create a message exchange (using a definition structure)
cjmxcreate Create a message exchange (using inline parameters)
cjmxdelete Delete a message exchange
cjmxflush Flush all messages or tasks from a message exchange
cjmxsend Send a message to a message exchange

(optional wait for acknowledgement)
cjmxstatus Fetch message exchange status
cjmxwait Wait for a message to arrive at a message exchange

(optional timeout)

Buffer Manager (class bm)

cjbmbuild Create a buffer pool (using a definition structure)
cjbmcreate Create a buffer pool (using inline parameters)
cjbmdelete Delete a buffer pool
cjbmfree Free a buffer
cjbmget Get a buffer from a specific pool (optional timeout)
cjbmid Get a buffer's buffer pool id
cjbmsize Get the size of a buffer
cjbmstatus Fetch buffer pool status
cjbmuse Add to a buffer's use count

Memory Manager (class mm)

cjmmbuild Create a memory pool (using a definition structure)
cjmmcreate Create a memory pool (using inline parameters)
cjmmdelete Delete a memory pool
cjmmfree Free a block of memory
cjmmget Get a block of memory
cjmmid Get a memory block's memory pool id
cjmmresize Grow or shrink a memory block
cjmmsection Add a section of memory to a memory pool
cjmmsize Get the size of a block of memory
cjmmuse Add to a memory block's use count

192 rev9 KADAK AMX Service Procedures

Circular List Manager (class cl)

cjclabl Add to the bottom of a circular list
cjclatl Add to the top of a circular list
cjclinit Initialize a circular list
cjclrbl Remove from the bottom of a circular list
cjclrtl Remove from the top of a circular list

Linked List Manager (class lm)

cjlmcreate Create an empty list
cjlmhead Find the first object on a list (head)
cjlminsc Insert before the specified object on a list
cjlminsh Insert at the head of a list
cjlminsk Insert into a keyed list
cjlminst Insert at the tail of a list
cjlmmerg Merge two lists
cjlmnext Find the next object on a list (walk towards tail)
cjlmordk Reorder an object in a keyed list
cjlmprev Find the previous object on a list (walk towards head)
cjlmrmvc Remove the specified object from a list
cjlmrmvh Remove the object from the head of a list
cjlmrmvt Remove the object from the tail of a list
cjlmtail Find the last object on a list (tail)

AMX Service Procedures KADAK rev9 193

Interrupt Control for AMX 68000, CFire, 4-ARM, 4-Thumb,
PPC32, MA32 (class ksi)

cjksitrap Install a task trap handler (if supported by processor)
cjksivtp Fetch pointer to the Vector Table
cjksivtrd Read an entry from the Vector Table
cjksivtwr Write an entry into the Vector Table
cjksivtx Exchange an entry in the Vector Table

Interrupt Control for AMX 386/ET (class ksi)

cjksidtm Make an interrupt gate description
cjksidtrd Read an entry from the Interrupt Descriptor Table
cjksidtwr Write an entry into the Interrupt Descriptor Table
cjksidtx Exchange an entry in the Interrupt Descriptor Table
cjksispwr Install an ISP pointer as an interrupt gate

in an entry in the Interrupt Descriptor Table
cjksitrap Install a task trap handler

Processor and C Interface Procedures (class cf)

In addition to the services provided by AMX and its managers, the AMX Library
includes several C procedures of a general nature which simplify application
programming in real-time systems on your target processor. Refer to the appropriate
AMX Target Guide for processor specific implementation details, including C functions
for manipulating special processor registers.

cjcfccsetup Setup C environment
cjcfdi Disable interrupts
cjcfei Enable interrupts
cjcfhwdelay Delay n microseconds
cjcfhwXcache Manipulate (flush/enable/disable) data and/or instruction caches
cjcfhwXflush Flush data and/or instruction caches
cjcfjlong Long jump to a mark set by cjcfjset
cjcfjset Set a mark for a subsequent long jump by cjcfjlong
cjcfmcopy Copy a block of memory
cjcfmset Set (fill) a block of memory
cjcfstkjmp Switch stacks and jump to a new procedure
cjcftag Convert a string to an AMX tag value
cjcfvol8,16,32 Read a volatile 8, 16, 32-bit variable
cjcfvolpntr Read a volatile pointer variable

Hardware I/O port operations
cjcfinp8,16,32 Read from an 8, 16, 32-bit input I/O port
cjcfoutp8,16,32 Write an 8, 16, 32-bit value to an output I/O port

Memory mapped I/O port operations
cjcfin8,16,32 Read from an 8, 16, 32-bit input I/O port
cjcfout8,16,32 Write an 8, 16, 32-bit value to an output I/O port

194 rev9 KADAK AMX Service Procedures

The AMX Library also includes several C procedures which are used privately by
KADAK. These procedures, although available for your use, are not documented in the
AMX Target Guides and are subject to change at any time. The procedures are briefly
described in source file CJZZZUB.ASM (or CJZZZUB.S). Prototypes will be found in file
CJZZZIF.H. The register array structure cjxregs (or cjxfpregs or cjxmregs) which
they reference is defined in file CJZZZKT.H.

cjcfregld Load general registers from a register array
cjcfregst Store general registers into a register array
cjcfsint Generate a software initiated interrupt or exception

cjcffpregld Load PowerPC floating point registers from a register array
cjcffpregst Store PowerPC floating point registers into a register array

cjcfmregld Load ARM banked registers from an extended register array
cjcfmregst Store ARM banked registers into an extended register array

AMX Procedures KADAK 195

18. AMX Procedures

18.1 Introduction
A description of every AMX Library procedure is provided in this chapter. The
descriptions are ordered alphabetically for easy reference.

Italics are used to distinguish programming examples. Procedure names and variable
names which appear in narrative text are also displayed in italics. Occasionally a lower
case procedure name or variable name may appear capitalized if it occurs as the first
word in a sentence.

Vertical ellipses are used in program examples to indicate that a portion of the program
code is missing. Most frequently this will occur in examples where fragments of
application dependent code are missing.

:
: /* Dismiss device interrupt */
:

Capitals are used for all defined AMX filenames, constants and error codes. All AMX
procedure, structure and constant names can be readily identified according to the
nomenclature introduced in Chapter 1.3.

A consistent style has been adopted for each description. The procedure name is
presented at the extreme top right and left as in a dictionary. This method of presentation
has been chosen to make it easy to find procedures since they are ordered alphabetically.

Purpose A one-line statement of purpose is always provided.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

This block is used to indicate which of your AMX application procedures
can call the AMX procedure. The term ISP refers to the Interrupt Handler
of a conforming ISP. A filled in box indicates that the procedure is
allowed to call the AMX procedure. In the above example, only tasks and
Restart Procedures would be allowed to call the procedure.

Setup The prototype of the AMX procedure is shown.
The AMX header file in which the prototype is located is identified.
Include AMX header file CJZZZ.H for compilation.

File CJZZZ.H is a generic AMX include file which automatically includes
the correct subset of the AMX header files for a particular target
processor. If you include CJZZZ.H instead of its KADAK part numbered
counterpart (CJnnn.H), your AMX application source modules will be
readily portable to other processors without editing.

Description Defines all input parameters to the procedure and expands upon the
purpose or method if required.

196 KADAK AMX Procedures

Interrupts AMX procedures frequently must deal with the processor interrupt mask.
The effect of each AMX procedure on the interrupt state is defined
according to the following legend.

� Disabled � Enabled � Restored
(Not in ISP)

D E R Effect on Interrupts
� � � Untouched
� � � Disabled and left disabled upon return
� � � Enabled and left enabled upon return
� � � Disabled and then enabled upon return
� � � Disabled and then, prior to return, restored to the state in

effect upon entry to the procedure
� � � Disabled, possibly briefly enabled and then, prior to return,

restored to the state in effect upon entry to the procedure

The warning (Not in ISP) will be present as a reminder that when the Interrupt
Handler of a conforming ISP calls the AMX procedure, interrupts will
NOT be explicitly enabled by the AMX procedure. If interrupts are
enabled when an Interrupt Handler calls the AMX procedure, they will be
enabled upon return.

Returns The outputs, if any, produced by the procedure are always defined.

Most AMX procedures return an integer error status identified as a
CJ_ERRST. Note that CJ_ERRST is not a C data type. CJ_ERRST is defined
(using #define) to be an int allowing error codes to be easily handled as
integers but readily identified as AMX error codes.

Restrictions If any restrictions on the use of the procedure exist, they are described.

Note Special notes, suggestions or warnings are offered where necessary.

Task Switch Task switching effects, if any, are described.

Example An example is provided for each of the more complex AMX procedures.
The examples are kept simple and are intended only to illustrate the
correct calling sequence.

See Also A cross reference to other related AMX procedures is always provided if
applicable.

AMX PPC32 Users
AMX PPC32 does not actually disable interrupts to close the
critical sections of code within its procedures. Instead, AMX
PPC32 leaves the interrupt state unaltered but allows only quick
interrupts during its critical operations. Refer to Chapter 3 of the
AMX PPC32 Target Guide for a detailed descripton of the AMX
interaction with the PowerPC™ interrupt system and a revised
definition of the above interrupt legend.

AMX Procedures KADAK 197

cjbmbuild cjbmbuild

Purpose Build (Create) a Buffer Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmbuild(CJ_ID *bpidp, struct cjxbpdef *bpdefp);

Description bpidp is a pointer to storage for the buffer pool id of the buffer pool
allocated to the caller.

bpdefp is a pointer to a buffer pool definition. Structure cjxbpdef is
defined in file CJZZZSD.H as follows:

struct cjxbpdef {
CJ_TAGDEF xbpdtag; /* Buffer pool tag */
void *xbpdmemp; /* Memory pointer */
long xbpdmsize; /* Size of memory */
int xbpdnbuf; /* Number of buffers */
int xbpdbsize; /* Size of buffers */
};

xbpdtag is a 4-character array for the buffer pool name tag.

xbpdmemp is a pointer to a long-aligned region of contiguous alterable
memory (RAM) in which the Buffer Manager will create the buffer pool.

xbpdmsize is the size, in bytes, of the memory region referenced by
xbpdmemp. The region size must be a multiple of 4 and must be at least
N = (xbpdbsize + sizeof(struct cjxbufh)) * xbpdnbuf.

xbpdnbuf is the number of buffers in the buffer pool.

xbpdbsize is the usable size, in bytes, of each buffer in the pool. The
buffer size must be a multiple of 4 and >= CJ_MINBFS (usually 8).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*bpidp contains a valid buffer pool id.

Warnings returned:
CJ_WRBMMEMSIZ Not enough memory provided
The memory region provided as input is not large enough to allocate
xbpdnbuf buffers of size xbpdbsize. A valid buffer pool has been
created and *bpidp contains its buffer pool id. Use cjbmstatus to
find the number of buffers actually allocated.

...more

198 KADAK AMX Procedures

Returns ...continued

Errors returned:
For all errors, the buffer pool id at *bpidp is undefined on return.
CJ_ERBMNONE No free buffer pool
CJ_ERBMNBUF No buffers defined in your pool definition
CJ_ERBMSIZE Buffer size defined in your pool definition

is too small

Example #include "CJZZZ.H"
#define NBUF 10
#define BUFSIZE 64
#define POOLSIZE ((BUFSIZE + sizeof(struct cjxbufh)) * NBUF)

static long poolmemA[POOLSIZE/sizeof(long)];
static long poolmemB[POOLSIZE/sizeof(long)];

static struct cjxbpdef pooldefA = {
{"Bp-A"}, /* Buffer pool tag */
poolmemA, /* Memory pointer */
POOLSIZE, /* Size of memory */
NBUF, /* Number of buffers */
BUFSIZE /* Size of buffers */
};

CJ_ID CJ_CCPP makepoolA(void) {
CJ_ID poolid;

if (cjbmbuild(&poolid, &pooldefA) >= CJ_EROK)
return(poolid); /* Accept warning */

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makepoolB(void) {
struct cjxbpdef pooldefB;
CJ_ID poolid;

*(CJ_TYTAG *)&pooldefB.xbpdtag = cjcftag("Bp-B");
pooldefB.xbpdmemp = poolmemB;
pooldefB.xbpdmsize = POOLSIZE;
pooldefB.xbpdnbuf = NBUF;
pooldefB.xbpdbsize = BUFSIZE;

if (cjbmbuild(&poolid, &pooldefB) >= CJ_EROK)
return(poolid); /* Accept warning */

else return(CJ_IDNULL); /* Error */
}

See Also cjbmcreate, cjbmdelete, cjksfind

AMX Procedures KADAK 199

cjbmcreate cjbmcreate

Purpose Create a Buffer Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmcreate(CJ_ID *bpidp, char *tag,

void *memp, long memsize,
int nbuf, int bufsize);

Description bpidp is a pointer to storage for the buffer pool id of the buffer pool
allocated to the caller.

tag is a pointer to a 4-character string for the buffer pool name tag.

memp is a pointer to a long-aligned region of contiguous alterable memory
(RAM) in which the Buffer Manager will create the buffer pool.

memsize is the size, in bytes, of the memory region referenced by memp.
The region length, in bytes, must be at least
N = (bufsize + sizeof(struct cjxbufh)) * nbuf.

nbuf is the number of buffers in the buffer pool.

bufsize is the usable size, in bytes, of each buffer in the pool. The buffer
size must be a multiple of 4 and >= CJ_MINBFS (usually 8).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*bpidp contains a valid buffer pool id.

Warnings returned:
CJ_WRBMMEMSIZ Not enough memory provided
The memory region provided as input is not large enough to allocate
nbuf buffers of size bufsize. A valid buffer pool has been created and
*bpidp contains its buffer pool id. Use cjbmstatus to find the number
of buffers actually allocated.

Errors returned:
For all errors, the buffer pool id at *bpidp is undefined on return.
CJ_ERBMNONE No free buffer pool
CJ_ERBMNBUF No buffers defined in your pool definition
CJ_ERBMSIZE Buffer size defined in your pool definition

is too small

200 KADAK AMX Procedures

Example #include "CJZZZ.H"
#define NBUF 10
#define BUFSIZE 64
#define POOLSIZE ((BUFSIZE + sizeof(struct cjxbufh)) * NBUF)

static long poolmemC[POOLSIZE/sizeof(long)];

CJ_ID CJ_CCPP makepoolC(void) {
CJ_ID poolid;
CJ_ERRST status;

status = cjbmcreate(&poolid, "Bp-C",
poolmemC, POOLSIZE, NBUF, BUFSIZE);

if (status == CJ_EROK)
return(poolid);

else if (status == CJ_WRBMMEMSIZ)
cjbmdelete(poolid);

return(CJ_IDNULL);
}

See Also cjbmbuild, cjbmdelete, cjksfind

AMX Procedures KADAK 201

cjbmdelete cjbmdelete

Purpose Delete a Buffer Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmdelete(CJ_ID poolid);

Description poolid is the buffer pool id of the buffer pool to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERBMID Invalid buffer pool id
CJ_ERBMBUSY Buffer pool is busy

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the buffer pool. Failure to observe this
restriction may lead to unexpected and unpredictable faults.

See Also cjbmbuild, cjbmcreate

202 KADAK AMX Procedures

cjbmfree cjbmfree

Purpose Free a Buffer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmfree(void *buffp);

Description buffp is a pointer to a buffer obtained by a cjbmget call.

Interrupts � Disabled � Enabled � Restored
(Not in ISP)

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERBMBADP Buffer pointer does not reference a valid buffer

from a buffer pool
CJ_ERBMNOUSE Buffer not in use
CJ_ERNOENVLOP No message envelope available

The buffer use count is decremented by one. If the use count goes to zero,
the buffer is returned to its buffer pool. If any tasks are waiting for a
buffer from that pool, the buffer is given to the task at the head of the
buffer pool's task wait list. Otherwise, the buffer is added to the end of the
buffer pool's list of free buffers.

If the buffer use count does not go to zero, the buffer remains in use by
other tasks in your system. The caller must not make any further
references to the buffer.

Task Switch If the free buffer is given to a task waiting for a buffer, a task switch may
occur. If the caller is a task, a task switch will occur if the waiting task is
of higher priority than the caller. If the caller is an ISP, a task switch will
occur when the interrupt service is complete if the waiting task is of higher
priority than the interrupted task.

See Also cjbmget, cjbmuse

AMX Procedures KADAK rev9 203

cjbmget cjbmget

Purpose Get a Buffer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmget(CJ_ID poolid, void *bufpp,

int priority, CJ_TIME timeout);

Description poolid is the id of the buffer pool from which the buffer is to be obtained.

bufpp is a pointer to storage for the returned pointer to the buffer. bufpp
is prototyped as a void * allowing it to be a pointer to any type of
pointer without the necessity of casts to keep some C compilers happy.

priority is the priority at which the caller wishes to wait (0 = highest).
To wait in FIFO order, have all callers use the same value for
priority. This parameter is not used if timeout is < 0.

timeout > 0 is the maximum interval measured in system ticks which the
caller is prepared to wait for a buffer. If timeout = 0, the caller will
wait forever for a buffer. If timeout < 0, the caller will not be
allowed to wait for a buffer.

Interrupts � Disabled � Enabled � Restored
(Not in ISP)

Returns Error status is returned.
CJ_EROK Call successful
*bufpp contains a valid buffer pointer.
The buffer use count is set to one.

Warnings returned:
The content of *bufpp is undefined.
CJ_WRBMNOBUF No free buffer available
CJ_WRTMOUT Timed out before buffer became available

Errors returned:
The content of *bufpp is undefined.
CJ_ERBMID Invalid buffer pool id
CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

Task Switch If the calling task waits for a buffer, there will be an immediate task
switch to the next lower priority ready task.

Restrictions ISPs, Timer Procedures and Restart Procedures must call cjbmget with
timeout = -1 since they must not wait for a buffer.

See Also cjbmfree, cjbmuse, cjbmsize, cjbmstatus

204 KADAK AMX Procedures

cjbmid cjbmid

Purpose Get a Buffer's Buffer Pool Id

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmid(CJ_ID *bpidp, void *buffp);

Description bpidp is a pointer to storage for the buffer pool id of the buffer pool to
which the buffer buffp belongs.

buffp is a pointer to a buffer obtained by a cjbmget call.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*bpidp contains a valid buffer pool id.

Errors returned:
For all errors, the buffer pool id at *bpidp is undefined on return.
CJ_ERBMBADP Buffer pointer does not reference a valid buffer

from a buffer pool

See Also cjbmget, cjbmstatus

AMX Procedures KADAK 205

cjbmsize cjbmsize

Purpose Get Size of a Buffer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmsize(void *buffp, int *sizep);

Description buffp is a pointer to a buffer obtained by a cjbmget call.

sizep is a pointer to storage for the size, in bytes, of the buffer referenced
by buffp.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*sizep contains the buffer size.

Errors returned:
For all errors, the buffer size at *sizep is undefined on return.
CJ_ERBMBADP Buffer pointer does not reference a valid buffer

from a buffer pool
CJ_ERBMNOUSE Buffer not in use

See Also cjbmget, cjbmstatus

206 KADAK AMX Procedures

cjbmstatus cjbmstatus

Purpose Get Status of a Buffer Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmstatus(CJ_ID poolid,

struct cjxbpsts *statusp);

Description poolid is the buffer pool id of the buffer pool of interest.

statusp is a pointer to storage for the buffer pool status. Structure
cjxbpsts is defined in file CJZZZSD.H as follows:

struct cjxbpsts {
CJ_TYTAG xbpstag; /* Buffer pool tag */
int xbpsnbuf; /* Number of buffers in pool */
int xbpssize; /* Buffer size (bytes) */
int xbpsfree; /* Number of free buffers */

/* >0 # of buffers available */
/* 0 empty */
/* -n empty; n tasks waiting */

};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the buffer pool status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_ERBMID Invalid buffer pool id

See Also cjbmid, cjbmsize

AMX Procedures KADAK 207

cjbmuse cjbmuse

Purpose Add to a Buffer's Use Count

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjbmuse(void *buffp, int increment);

Description buffp is a pointer to a buffer obtained by a cjbmget call.

increment is the signed value to be added to the buffer use count.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
Buffer use count = buffer use count + increment.

Errors returned:
For all errors, the buffer use count is left unaltered.
CJ_ERBMBADP Buffer pointer does not reference a valid buffer

from a buffer pool
CJ_ERBMNOUSE Buffer not in use
CJ_ERBMUSEOVF Buffer use count overflow or underflow

The use count must remain > 0.

Once a buffer's use count is increased to n, the buffer will not be returned
to the free list of its buffer pool until n calls to cjbmfree are made to
release the buffer.

See Also cjbmget, cjbmfree

208 KADAK AMX Procedures

cjcfxxxxxx cjcfxxxxxx

Purpose Processor and C Interface Procedures

Description The AMX Library includes several C procedures of a general nature
which simplify application programming in real-time systems on your
target processor. Refer to the appropriate AMX Target Guide for
processor specific implementation details, including C functions for
manipulating special processor registers.

cjcfccsetup Setup C environment
cjcfdi Disable interrupts
cjcfei Enable interrupts
cjcfhwdelay Delay n microseconds
cjcfhwXcache Manipulate (flush/enable/disable) data and/or

instruction caches
cjcfhwXflush Flush data and/or instruction caches
cjcfjlong Long jump to a mark set by cjcfjset
cjcfjset Set a mark for a subsequent long jump by cjcfjlong
cjcfmcopy Copy a block of memory
cjcfmset Set (fill) a block of memory
cjcfstkjmp Switch stacks and jump to a new procedure
cjcftag Convert a string to an AMX tag value
cjcfvol8,16,32 Read a volatile 8, 16, 32-bit variable
cjcfvolpntr Read a volatile pointer variable

Hardware I/O port operations
cjcfinp8,16,32 Read from an 8, 16, 32-bit input I/O port
cjcfoutp8,16,32 Write an 8, 16, 32-bit value to an output I/O port

Memory mapped I/O port operations
cjcfin8,16,32 Read from an 8, 16, 32-bit input I/O port
cjcfout8,16,32 Write an 8, 16, 32-bit value to an output I/O port

AMX Procedures KADAK 209

cjclabl cjclabl
cjclatl cjclatl

Purpose Add to the Bottom or Top of a Circular List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
int CJ_CCPP cjclabl(struct cjxclist *clistp, CJ_T32U item);
int CJ_CCPP cjclatl(struct cjxclist *clistp, CJ_T32U item);

Description clistp is a pointer to the list header of a circular list previously initialized
using cjclinit. The list header structure cjxclist is defined in file
CJZZZSD.H as follows:

struct cjxclist {
int xclmax; /* Maximum # items on list */

/* merged with size of items */
int xclnum; /* Current # items on list */
int xcltop; /* Index of current top */
int xclbot; /* Index of next bottom */
};

item is the 8, 16 or 32-bit item value to be added to the bottom or top of
the list. The item size is determined by the circular list type which is
established when the list is initialized by cjclinit.

Interrupts � Disabled � Enabled � Restored

Returns Completion status is returned.
0 Added OK; list not full
1 Added OK; list now full

-1 Cannot add item; list is full

Example See example with cjclinit.

See Also cjclinit, cjclrbl, cjclrtl

210 KADAK AMX Procedures

cjclinit cjclinit

Purpose Initialize (Reset) a Circular List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjclinit(struct cjxclist *clistp,

int size, int nslot);

Description clistp is a pointer to storage to be used as a circular list. Since the size
and structure of the circular list is known only to the caller, clistp
points to the list header of the circular list to be initialized. The list
header structure cjxclist is defined in file CJZZZSD.H as follows:

struct cjxclist {
int xclmax; /* Maximum # items on list */

/* merged with size of items */
int xclnum; /* Current # items on list */
int xcltop; /* Index of current top */
int xclbot; /* Index of next bottom */
};

size is the slot size of the circular list (1, 2 or 4 corresponding to 8, 16 or
32-bit slots).

nslot is the number of slots in the list. nslot < 2intsize-2 where intsize is the
number of bits in an integer. For example, if an integer is 32 bits,
nslot must be < 230.

Note A circular list is actually a private AMX structure consisting of two parts:
a circular list header structure cjxclist followed by storage for nslot
slots of size bytes each. The example illustrates two circular lists: a static
list clistA and a dynamic list at *clistBp.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

...more

AMX Procedures KADAK 211

Example #include "CJZZZ.H"
#define NSLOTA 32 /* Number of slots for list A*/
#define NSLOTB 512 /* Number of slots for list B*/

extern CJ_ID mempoolid; /* Memory pool id */

static struct cltypeA { /* Allocate list A */
struct cjxclist clhead;
char clslots[NSLOTA];
} clistA;

/* Pointer to dynamic list B */
static struct cjxclist *clistBp;

void CJ_CCPP clsample(void) {
unsigned long memsize; /* Actual size of list B */
char ch; /* Characters from listA */
long itemB; /* Values from listB */

/* Initialize list A */
cjclinit(&clistA.clhead,

sizeof(clistA.clslots[0]), NSLOTA);

/* Get memory for list B */
cjmmget(mempoolid,

sizeof(struct cjxclist) + (NSLOTB * sizeof(long)),
&clistBp, &memsize);

/* Initialize list B */
cjclinit(clistBp, sizeof(long), NSLOTB);

cjclabl(&clistA.clhead, 'A');
cjclabl(&clistA.clhead, 'B');
cjclabl(&clistA.clhead, 'C');

cjclrtl(&clistA.clhead, &ch); /* ch = 'A' */
cjclrbl(&clistA.clhead, &ch); /* ch = 'C' */
cjclrbl(&clistA.clhead, &ch); /* ch = 'B' */

cjclatl(clistBp, 0x1L);
cjclatl(clistBp, 0x2L);
cjclatl(clistBp, 0x3L);

cjclrbl(clistBp, &itemB); /* itemB = 0x1L */
cjclrtl(clistBp, &itemB); /* itemB = 0x3L */
cjclrbl(clistBp, &itemB); /* itemB = 0x2L */
}

See Also cjclabl, cjclatl, cjclrbl, cjclrtl

212 KADAK AMX Procedures

cjclrbl cjclrbl
cjclrtl cjclrtl

Purpose Remove from the Bottom or Top of a Circular List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
int CJ_CCPP cjclrbl(struct cjxclist *clistp, void *itemp);
int CJ_CCPP cjclrtl(struct cjxclist *clistp, void *itemp);

Description clistp is a pointer to the list header of a circular list previously initialized
using cjclinit. The list header structure cjxclist is defined in file
CJZZZSD.H as follows:

struct cjxclist {
int xclmax; /* Maximum # items on list */

/* merged with size of items */
int xclnum; /* Current # items on list */
int xcltop; /* Index of current top */
int xclbot; /* Index of next bottom */
};

itemp is a pointer to storage for the 8, 16 or 32-bit item value to be
removed from the bottom or top of the list. The item size is determined
by the circular list type which is established when the list is initialized
by cjclinit.

If itemp is NULL, the item will be removed from the list but will not be
returned to the caller.

Interrupts � Disabled � Enabled � Restored

Returns Completion status is returned.
0 Removed OK; list not empty
1 Removed OK; list now empty

-1 Cannot remove item; list is empty

Example See example with cjclinit.

See Also cjclinit, cjclabl, cjclatl

AMX Procedures KADAK 213

cjevbuild cjevbuild

Purpose Build (Create) an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevbuild(CJ_ID *evidp,

struct cjxevdef *evdefp);

Description evidp is a pointer to storage for the event group id of the event group
allocated to the caller.

evdefp is a pointer to an event group definition. Structure cjxevdef is
defined in file CJZZZSD.H as follows:

struct cjxevdef {
CJ_TAGDEF xevdtag; /* Event group tag */
unsigned int xevdvalue; /* Initial event values */
};

xevdtag is a 4-character array for the event group name tag.

xevdvalue is the initial value for all of the event flags in the event group.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*evidp contains a valid event group id.

Errors returned:
For all errors, the event group id at *evidp is undefined on return.
CJ_EREVNONE No free event group

...more

214 KADAK AMX Procedures

Example #include "CJZZZ.H"

static struct cjxevdef groupdefA = {
{"Ev-A"}, /* Event group tag */
0x0005 /* Initial event flags */
};

CJ_ID CJ_CCPP makegroupA(void) {
CJ_ID groupid;

if (cjevbuild(&groupid, &groupdefA) == CJ_EROK)
return(groupid);

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makegroupB(void) {
struct cjxevdef groupdefB;
CJ_ID groupid;

*(CJ_TYTAG *)&groupdefB.xevdtag = cjcftag("Ev-B");
groupdefB.xevdvalue = 0;

if (cjevbuild(&groupid, &groupdefB) == CJ_EROK)
return(groupid);

else return(CJ_IDNULL); /* Error */
}

See Also cjevcreate, cjevdelete, cjksfind

AMX Procedures KADAK 215

cjevcreate cjevcreate

Purpose Create an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevcreate(CJ_ID *evidp, char *tag,

unsigned int value);

Description evidp is a pointer to storage for the event group id of the event group
allocated to the caller.

tag is a pointer to a 4-character string for the event group name tag.

value is the initial value for all of the event flags in the event group.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*evidp contains a valid event group id.

Errors returned:
For all errors, the event group id at *evidp is undefined on return.
CJ_EREVNONE No free event group

Example #include "CJZZZ.H"

CJ_ID CJ_CCPP makegroupC(void) {
CJ_ID groupid;

if (cjevcreate(&groupid, "Ev-C", 0x0005) == CJ_EROK)
return(groupid);

else return(CJ_IDNULL);
}

See Also cjevbuild, cjevdelete, cjksfind

216 KADAK AMX Procedures

cjevdelete cjevdelete

Purpose Delete an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevdelete(CJ_ID groupid);

Description groupid is the event group id of the event group to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_EREVID Invalid event group id
CJ_EREVBUSY Event group is busy

One or more tasks are still waiting
for events in the group.

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the event group. Failure to observe
this restriction may lead to unexpected and unpredictable faults.

See Also cjevbuild, cjevcreate

AMX Procedures KADAK 217

cjevread cjevread

Purpose Read the Current Event States in an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevread(CJ_ID groupid, unsigned int *eventp);

Description groupid is the group id of the event group of interest.

eventp is a pointer to storage to receive the current state of the event flags
of the particular event group.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*eventp contains a copy of the event group flags.

Errors returned:
The content of *eventp is undefined.
CJ_EREVID Invalid event group id

Note Cjevread differs from cjevwaits. Cjevread gives you the current state
of all event flags of a particular event group. Cjevwaits gives a task the
state of all event flags as they were at the completion of that task's most
recent call to cjevwait.

See Also cjevstatus, cjevwaits

218 KADAK AMX Procedures

cjevsignal cjevsignal

Purpose Signal Event(s) in an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevsignal(CJ_ID groupid,

unsigned int mask,
unsigned int value, int type);

Description groupid is the group id of the event group of interest.

mask is a bit mask identifying the event flags of interest in the event
group.

value is a bit pattern which specifies the desired states for each of the
event flags selected by the mask. The values for flags not selected by
the mask are ignored.

type defines the signal type: CJ_EVCONST for constant (level) events;
CJ_EVPULSE for pulsed events. If type = CJ_EVPULSE, value must
equal mask.

Constant events cause the selected flags to be adjusted to the values
determined by value. Any task whose wait criteria is met is allowed to
resume. The selected flags remain in the adjusted state.

Pulsed events cause a momentary transition of the selected flags to the
one (true) state. Any task whose wait criteria is met is allowed to
resume. The selected flags are then immediately reset.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_EREVID Invalid event group id
CJ_ERNOENVLOP Cannot signal the event(s) because no message

envelopes are available for use

Task Switch If any tasks are waiting at the event group, an immediate task switch to the
AMX Kernel Task will occur. If the caller is an ISP, the task switch will
occur when the interrupt service is complete.

See Also cjevwait

AMX Procedures KADAK 219

cjevstatus cjevstatus

Purpose Get Status of an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevstatus(CJ_ID groupid,

struct cjxevsts *statusp);

Description groupid is the event group id of the event group of interest.

statusp is a pointer to storage for the event group status. Structure
cjxevsts is defined in file CJZZZSD.H as follows:

struct cjxevsts {
CJ_TYTAG xevstag; /* Event group tag */
unsigned int xevsvalue; /* Current event values */
int xevscount; /* Event group task count */

/* >=0 if no tasks waiting */
/* -n = n tasks waiting */

};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the event group status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_EREVID Invalid event group id

See Also cjevwaits, cjevread

220 rev9 KADAK AMX Procedures

cjevwait cjevwait

Purpose Wait for Event(s) in an Event Group

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjevwait(CJ_ID groupid,

unsigned int mask,
unsigned int value,
int match, CJ_TIME timeout);

Description groupid is the group id of the event group containing the events of
interest.

mask is a bit mask identifying the event flags of interest in the group.

value is a bit pattern which specifies the states of interest for each of the
event flags selected by the mask. The values for flags not selected by
the mask are ignored. The value for pulsed event flags must be one.

match defines the event match requirements.

If match = CJ_EVOR, any selected flag in the state specified by value
is considered the event of interest.

If match = CJ_EVAND, all selected flags must be in the state specified
by value to be considered the event of interest.

timeout > 0 is the maximum interval measured in system ticks which the
caller is prepared to wait for an event match. Timeout must be
positive. If timeout = 0, the caller will wait forever for the specified
event match. If timeout < 0, the caller will not be allowed to wait for
an event match.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful; event match occurred

Warnings returned:
CJ_WREVNOEVT No event match; caller chose not to wait
CJ_WRTMOUT Timed out before event match occurred

Errors returned:
CJ_EREVID Invalid event group id
CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

...more

AMX Procedures KADAK 221

Returns ...continued

If the events in the group match your event selection criterion when you
call cjevwait, the calling task continues execution immediately without
waiting.

Upon return from cjevwait after a match or a timeout, the state of all
event flags in the group at the time of the return are saved in the calling
task's Task Control Block. Procedure cjevwaits can be called to retrieve
the saved copy of the event flags. If you waited for any one of several
events, you can interpret these flags to determine which of the events
caused your task to resume. If you timed out waiting for all of several
events to occur, you can interpret these flags to determine which events
did not occur.

Task Switch If the calling task must wait for the events to occur, there will be an
immediate task switch to the next lower priority ready task.

See Also cjevstatus, cjevsignal, cjevwaits

222 KADAK AMX Procedures

cjevwaits cjevwaits

Purpose Fetch a Task's Saved Event Flags

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
unsigned int CJ_CCPP cjevwaits(void);

Description Used by a task to fetch a copy of the event flags as they were at the
completion of the task's most recent event wait call to cjevwait.

Interrupts � Disabled � Enabled � Restored

Returns The calling task's saved event flag copy is returned.

A task can wait for events in an event group by calling cjevwait.
Cjevwaits is used to retrieve the state of the event flags as they were at
the time the cjevwait call completed.

Cjevwait saves a copy of the current state of all event flags in the group
in the calling task's Task Control Block at the moment the calling task's
event match occurs or its wait interval expires. Subsequent calls by the
task to cjevwaits will retrieve these saved event flags.

Cjevwaits is paired with a task's most recent cjevwait call. Cjevwait
only updates the saved event flag copy if an event match or timeout
occurs. Cjevwaits will continue to return the same value until the task
makes another call to cjevwait which results in an update of the saved
event flag copy.

Note Cjevwaits differs from cjevread. Cjevwaits gives the calling task the
state of all event flags as they were at the completion of the task's most
recent call to cjevwait. Cjevread gives you the current state of all
event flags of a particular event group.

See Also cjevread, cjevsignal, cjevstatus, cjevwait

AMX Procedures KADAK 223

cjkserror cjkserror

Purpose User Error Procedure

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

This procedure is called by AMX whenever any AMX procedure detects
an error condition.

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
int CJ_CCPP cjkserror(int error, CJ_ID taskid);

Description Procedure cjkserror is considered to be your application User Error
Procedure. Source code for this procedure is provided in file CJZZZUF.C.
Edit the procedure to meet your application's needs.

error is the AMX error code (error < 0) or warning code (error > 0)
defining the error condition. Error codes are summarized in Appendix
B.

taskid is the task id of the task which was executing at the time of the
error. If an ISP was executing at the time of the error, taskid will be
CJ_IDNULL.

Interrupts � Disabled � Enabled � Restored

Returns The AMX error code error

The error code returned by cjkserror to AMX is subsequently returned
by AMX to the caller of the AMX procedure in which the error condition
was detected.

Note Your application can call cjkserror. Error codes <= CJ_ERBASE and
warning codes >= CJ_AKBASE are reserved for use by your application.

See Also cjksfatal

224 KADAK AMX Procedures

cjksfatal cjksfatal

Purpose Fatal Exit Procedure

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

This procedure is called by AMX whenever it detects a fatal error
condition in which to proceed would invite disaster.

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
void CJ_CCPP cjksfatal(int error, CJ_ID taskid);

Description Procedure cjksfatal is considered to be your application Fatal Exit
Procedure. Source code for this procedure is provided in file CJZZZUF.C.
Edit the procedure to meet your application's needs.

error is the AMX fatal exit code defining the fatal condition. Fatal exit
codes are summarized in Appendix B.

taskid is the task id of the task which was executing at the time of the
fatal fault. If an ISP was executing at the time of the fatal fault, taskid
will be CJ_IDNULL.

Interrupts � Disabled � Enabled � Restored

Returns There is no return from cjksfatal.

Note Your application can call cjksfatal. Fatal exit codes >= CJ_FEBASE are
reserved for use by your application.

See Also cjkserror

AMX Procedures KADAK 225

cjksfind cjksfind
cjksgbfind cjksgbfind

Purpose Find an AMX Object with a Specific Tag

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjksfind(CJ_ID *idp, char *tag,

CJ_IDKEY idkey);

CJ_ERRST CJ_CCPP cjksgbfind(CJ_ID *idp, CJ_TYTAG tagv,
CJ_IDKEY idkey);

Description idp is a pointer to storage for the object id of the general object of interest.

tag is a pointer to a 4-character name tag string identifying the object of
interest.

tagv is a 32-bit name tag value of type CJ_TYTAG identifying the object of
interest.

idkey is the object id key. Valid id keys are:
'B' Buffer pool
'E' Event group
'M' Mailbox
'P' Process (task)
'S' counting Semaphore or resource Semaphore
'T' Timer
'Y' memorY pool
'X' message eXchange

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*idp contains the object id of an object of type idkey which matches
the tag.

Errors returned:
For all errors, the object id at *idp is undefined on return.
CJ_ERNOEXIST No object of type idkey with matching tag can be

found.

If more than one object of type idkey was created with the same tag, you
will get back the object id of one of them, but which one is not certain.

...more

226 KADAK AMX Procedures

Example #include "CJZZZ.H"

/* Find a buffer pool given its name tag */

CJ_ID CJ_CCPP findpool(char *bptag) {
CJ_ID poolid;

if (cjksfind(&poolid, bptag, 'B') == CJ_EROK)
return(poolid);

else return(CJ_IDNULL);
}

/* Find task id for a task given its task definition */

CJ_ID CJ_CCPP findtask(struct cjxtkdef *tkdefp) {
CJ_ID taskid;

if (cjksgbfind(&taskid,
*(CJ_TYTAG *)(&tkdefp->xtkdtag),
'P') == CJ_EROK)

return(taskid);

else return(CJ_IDNULL);
}

See Also All cjXXbuild and cjXXcreate procedures

AMX Procedures KADAK rev9 227

cjkshook cjkshook

Purpose Install Task Scheduler Hooks

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjkshook(unsigned int hookmask,

void *hookp, struct cjxfhb *fhbp,
unsigned int key);

Description hookmask identifies the hooks which are to be installed. Set hookmask to
CJ_MAFNSHED to install hooks into the AMX Task Scheduler.

hookp is a pointer to an array of four pointers to your scheduler
procedures. The procedure pointers must be in the order illustrated in
the example. Set hookp to NULL to remove the hooks.

fhbp is a pointer to a statically allocated function hook block for the
private use of AMX. Structure cjxfhb is defined in header file
CJZZZSD.H.

key is an ordering key used by AMX to determine the position of your
hooks in the list of hooks which AMX maintains. Set key to 0xFFFF to
install application scheduler hooks.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Example #include "CJZZZ.H"
extern void starthook(void);
extern void endhook(void);
extern void suspendhook(void);
extern void resumehook(void);

static struct {
void (*uhstart)(void);
void (*uhend)(void);
void (*uhsuspend)(void);
void (*uhresume)(void);
} userhooks = {starthook, endhook,

suspendhook, resumehook};

static struct cjxfhb userfhb;

void CJ_CCPP RRproc(void) {
cjkshook(CJ_MAFNSHED, &userhooks, &userfhb, 0xFFFF);
}

Restrictions Your hook procedures must be coded in assembler according to the rules
established in the AMX Target Guide.

228 rev9 KADAK AMX Procedures

cjksixxxxx cjksixxxxx

Purpose Processor Dependent Interrupt Procedures

Description The AMX Library includes a collection of C procedures for manipulating
the content of the AMX Vector Table. These procedures are described in
the target specific AMX Target Guide.

Interrupt Control for AMX 68000, AMX CFire,
AMX 4-ARM, AMX 4-Thumb, AMX PPC32, AMX MA32

cjksitrap Install a task trap handler (if supported by processor)
cjksivtp Fetch pointer to the Vector Table
cjksivtrd Read an entry from the Vector Table
cjksivtwr Write an entry into the Vector Table
cjksivtx Exchange an entry in the Vector Table

Interrupt Control for AMX 386/ET

cjksidtm Make an interrupt gate description
cjksidtrd Read an entry from the Interrupt Descriptor Table
cjksidtwr Write an entry into the Interrupt Descriptor Table
cjksidtx Exchange an entry in the Interrupt Descriptor Table
cjksispwr Install an ISP pointer as an interrupt gate

in an entry in the Interrupt Descriptor Table
cjksitrap Install a task trap handler

AMX Procedures KADAK 229

cjkslaunch cjkslaunch
cjksenter cjksenter

Purpose Launch (Enter) the AMX Multitasking System

Used by This procedure must be called from your main() program to launch your
AMX application.

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
int CJ_CCPP cjkslaunch(void);

Prototype is in file CJZZZKF.H.
void CJ_CCPP cjksenter(CJ_CCONST1 struct cjxupt CJ_CCONST2 *uptp);

Description Procedure cjkslaunch is considered to be the startup code for your AMX
application . Source code for this procedure is provided in file
CJZZZUF.C. Edit the procedure to meet your application's startup needs.

After all application hardware startup initialization is complete,
cjkslaunch must call cjksenter to start the AMX multitasking system.

AMX initializes its internal parameters, switches to its private stack, starts
the AMX Kernel Task and executes all Restart Procedures. AMX then
begins its multitasking operation.

uptp is a pointer to the User Parameter Table in your AMX System
Configuration Module. Symbols CJ_CCONSTx are defined in header file
CJZZZCC.H as const or blank to meet the varying syntax needs of
different C compilers.

The structure cjxupt is defined in header file CJZZZSD.H.

Interrupts � Disabled � Enabled � Restored

Interrupts are disabled after you enter cjksenter while AMX initializes
itself. AMX enables interrupts prior to calling each of your Restart
Procedures. Interrupts remain enabled thereafter.

If your application shuts down and returns to cjkslaunch, interrupts are
restored to their state at the time cjkslaunch was called.

Returns There is no return from cjksenter unless a task calls cjksleave to
shutdown the AMX system. In that case, the error status errcode given to
cjksleave is passed back to cjkslaunch for return to its caller.

If your AMX User Parameter Table does not include proper kernel data
pointers, cjkslaunch returns fatal exit code CJ_FECFG.

See Also cjksleave

230 KADAK AMX Procedures

cjksleave cjksleave
cjksexit cjksexit

Purpose Leave (Exit) the AMX Multitasking System

Used by This procedure can only be called by a task which wishes to initiate an
orderly shutdown of the AMX system.

Setup Prototype is in file CJZZZIF.H.
#include "CJZZZ.H"
void CJ_CCPP cjksleave(int errcode, void *infop);

Prototype is in file CJZZZKF.H.
void CJ_CCPP cjksexit(void);

Description Procedure cjksleave is considered to be the shutdown code for your
AMX application . Source code for this procedure is provided in file
CJZZZUF.C. Edit the procedure to meet your application's shutdown
needs.

errcode is an application dependent error status code which is passed
back to procedure cjkslaunch.

infop is an additional application dependent pointer variable which is also
passed back to cjkslaunch.

After passing the exit information back to cjkslaunch, procedure
cjksleave must call cjksexit to force AMX to shut down your
multitasking system. AMX executes all of your Exit Procedures allowing
an orderly shutdown of the tasks in your system. AMX then returns, via
cjksenter, to the launch procedure cjkslaunch which can complete your
hardware shut down and restoral.

Interrupts � Disabled � Enabled � Restored

Returns There is no return from cjksleave. Execution resumes in procedure
cjkslaunch.

Restrictions If AMX was configured for permanent execution and you call cjksleave,
AMX will take its fatal exit via cjksfatal with fatal exit code
CJ_FENOEXIT.

See Also cjkslaunch, cjksfatal

AMX Procedures KADAK 231

cjkspriv cjkspriv

Purpose Alter Task Privilege

This procedure can be used to disable and restore AMX task switching by
raising and lowering task privilege. A task's execution priority is not
affected. Use of this procedure is discouraged since few applications will
ever have the need to inhibit task switching.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjkspriv(int option);

Description option = CJ_YES to raise task privilege.

option = CJ_NO to lower task privilege.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Restrictions For every call to raise privilege there must be a subsequent call to lower
privilege.

Once privilege has been raised, task switching is inhibited until privilege
is lowered.

Calls to cjkspriv can be nested allowing privilege to be raised n times
by nested procedures. There must be n subsequent calls to lower
privilege. Task switching is only enabled again when the last of the calls
to lower privilege is made.

232 KADAK AMX Procedures

cjksver cjksver

Purpose Get AMX Version Number

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
unsigned long CJ_CCPP cjksver(void);

Interrupts � Disabled � Enabled � Restored

Returns The AMX version number in the hexadecimal format 0xpp0vrrmmL
where:

pp is the KADAK processor identification code
v is the major release number (1, 2, 3 ...)
rr is the major revision number (00, 01, 02 ...)
mm is the minor revision number (a, b, c ...)

AMX Procedures KADAK 233

cjlmcreate cjlmcreate

Purpose Create an Empty List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlmcreate(struct cjxlh *listp, int offset);

Description listp is a pointer to the list header.

offset is the node offset (in bytes) at which the list node is located in
application objects to be linked in this list.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

The list header is initialized to define an empty list.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */
static struct cjxlh keylist; /* Key list header */

#define NUMOBJ 12 /* Array of objects */
static struct uobject objarray[NUMOBJ];

void CJ_CCPP listinit(void) {
int i;

/* Create empty lists */
cjlmcreate(&list,

((int) &((struct uobject *)0)->listnode));
cjlmcreate(&keylist,

((int) &((struct uobject *)0)->keynode));

/* Fill lists with objects */
for (i = 0; i < NUMOBJ; i++) {

cjlminst(&list, &objarray[i]);
cjlminsk(&list, &objarray[i], NUMOBJ - i);
}

}

234 KADAK AMX Procedures

cjlmhead cjlmhead

Purpose Find First Object on List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjlmhead(struct cjxlh *listp);

Description listp is a pointer to the list header.

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the object at the head of the list.

The object remains on the list.

Returns NULL if the list is empty.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listhead(void) {

return ((struct uobject *) cjlmhead(&list));
}

AMX Procedures KADAK 235

cjlminsc cjlminsc

Purpose Insert Object before Current Object on List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlminsc(struct cjxlh *listp,

void *newobj, void *curobj);

Description listp is a pointer to the list header.

newobj is a pointer to the new object to be inserted before the object
specified by curobj.

curobj is a pointer to a particular object on the list.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

void CJ_CCPP list2tail(struct uobject *objp) {
struct uobject *tailp; /* Tail pointer */

/* Find object at tail */
tailp = (struct uobject *) cjlmtail(&list);

if (tailp != NULL)
/* Insert object before tail */

cjlminsc(&list, objp, tailp);
}

236 KADAK AMX Procedures

cjlminsh cjlminsh

Purpose Insert Object at Head of List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlminsh(struct cjxlh *listp, void *objectp);

Description listp is a pointer to the list header.

objectp is a pointer to the object to be inserted as the new head of the list.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

void CJ_CCPP listnewhead(struct uobject *objp) {

cjlminsh(&list, objp); /* Insert object at head */
}

AMX Procedures KADAK 237

cjlminsk cjlminsk

Purpose Insert Object into Keyed List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlminsk(struct cjxlh *listp,

void *objectp, unsigned int key);

Description listp is a pointer to the list header.

objectp is a pointer to the object to be inserted into the list.

key is the insertion key. Objects are inserted in order of ascending key
values. The object with the smallest key will be at the head of the list.
If other objects with the same key value already reside on the list, the
new object will be inserted after all other objects with that key.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Restrictions The caller must own the list. The list must not be manipulated by other
tasks, ISPs or Timer Procedures while this call is in progress. You can use
the Semaphore Manager to control ownership of the list if necessary.

ISPs should avoid the use of this procedure unless dealing with very short
lists. Use of this procedure with long lists may cause unacceptable timing
effects in ISPs.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh keylist; /* Key list header */

void CJ_CCPP listkeyadd(struct uobject *objp,
unsigned int key) {

cjlminsk(&list, objp, key);
}

See Also cjlmordk

238 KADAK AMX Procedures

cjlminst cjlminst

Purpose Insert Object at Tail of List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlminst(struct cjxlh *listp, void *objectp);

Description listp is a pointer to the list header.

objectp is a pointer to the object to be inserted as the new tail of the list.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

void CJ_CCPP listnewtail(struct uobject *objp) {

cjlminst(&list, objp); /* Insert object at tail */
}

AMX Procedures KADAK 239

cjlmmerg cjlmmerg

Purpose Merge Two Lists

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlmmerg(struct cjxlh *destlist,

struct cjxlh *srclist,
void *destobj, void *srcobj);

Description &destlist is a pointer to the destination list header.

&srclist is a pointer to the source list header.

destobj is a pointer to the insertion point on the destination list.

srcobj is a pointer to the extraction point on the source list.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

All of the objects on the source list are inserted on the destination list
before destobj. Objects are removed from the source list starting with
srcobj, wrapping around from the tail to the head and ending with the
object immediately previous to srcobj. This list of source objects is then
inserted in order before destobj. The following example illustrates this
process.

Before
srcobj

srclist --- X -- Y -- Z
destlist -- A -- B -- C -- D -- E

destobj

After
srclist --- empty
destlist -- A -- B -- Y -- Z -- X -- C -- D -- E

Restrictions You must not merge two lists if either of the lists is a keyed list.

240 KADAK AMX Procedures

cjlmnext cjlmnext

Purpose Find Next Object on List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjlmnext(struct cjxlh *listp, void *curobj);

Description listp is a pointer to the list header.

curobj is a pointer to an object on this list.

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the object on the list immediately following the object
specified by curobj.

The objects remain on the list.

Returns NULL if curobj is at the tail of the list.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listscanfwd(int id) {

struct uobject *objp; /* Object pointer */

objp = cjlmhead(&list); /* Find head of list */

while (objp != NULL) {
if (objp->id == id)

break; /* Found object of interest */

objp = (struct uobject *) cjlmnext(&list, objp);
}

return (objp);
}

AMX Procedures KADAK 241

cjlmordk cjlmordk

Purpose Reorder an Object in a Keyed List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlmordk(struct cjxlh *listp,

void *objectp, unsigned int key);

Description listp is a pointer to the list header.

objectp is a pointer to the object on the list which is to be moved within
the list.

key is the value of the new key for the object referenced by objectp.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Restrictions The caller must own the list. The list must not be manipulated by other
tasks, ISPs or Timer Procedures while this call is in progress. You can use
the Semaphore Manager to control ownership of the list if necessary.

ISPs should avoid the use of this procedure unless dealing with very short
lists. Use of this procedure with long lists may cause unacceptable timing
effects in ISPs.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh keylist; /* Key list header */

void CJ_CCPP listchgkey(struct uobject *objp,
unsigned int key) {

cjlmordk(&keylist, objp, key);
}

See Also cjlminsk

242 KADAK AMX Procedures

cjlmprev cjlmprev

Purpose Find Previous Object on List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjlmprev(struct cjxlh *listp, void *curobj);

Description listp is a pointer to the list header.

curobj is a pointer to an object on this list.

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the object on the list immediately preceding the object
specified by curobj.

The objects remain on the list.

Returns NULL if curobj is at the head of the list.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listscanbwd(int id) {

struct uobject *objp; /* Object pointer */

objp = cjlmtail(&list); /* Find tail of list */

while (objp != NULL) {
if (objp->id == id)

break; /* Found object of interest */

objp = (struct uobject *) cjlmprev(&list, objp);
}

return (objp);
}

AMX Procedures KADAK 243

cjlmrmvc cjlmrmvc

Purpose Remove Object from List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjlmrmvc(struct cjxlh *listp, void *objectp);

Description listp is a pointer to the list header.

objectp is a pointer to the object to be removed from the list.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Restrictions The object referenced by objectp must be on the list referenced by
listp. Failure to observe this requirement may lead to unpredictable side
effects.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listrmv(struct uobject *objp) {

cjlmrmvc(&list, objp); /* Remove object from list */

return (objp);
}

244 KADAK AMX Procedures

cjlmrmvh cjlmrmvh

Purpose Remove Object from Head of List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjlmrmvh(struct cjxlh *listp);

Description listp is a pointer to the list header.

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the object removed from the head of the list.

Returns NULL if the list was empty.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listrmvhead(void) {

/* Remove object from head of list */
return ((struct uobject *) cjlmrmvh(&list));
}

AMX Procedures KADAK 245

cjlmrmvt cjlmrmvt

Purpose Remove Object from Tail of List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjlmrmvt(struct cjxlh *listp);

Description listp is a pointer to the list header.

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the object removed from the tail of the list.

Returns NULL if the list was empty.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listrmvtail(void) {

/* Remove object from tail of list */
return ((struct uobject *) cjlmrmvt(&list));
}

246 KADAK AMX Procedures

cjlmtail cjlmtail

Purpose Find Last Object on List

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void * CJ_CCPP cjlmtail(struct cjxlh *listp);

Description listp is a pointer to the list header.

Interrupts � Disabled � Enabled � Restored

Returns A pointer to the object at the tail of the list.

The object remains on the list.

Returns NULL if the list is empty.

Example #include "CJZZZ.H"

struct uobject {
int id; /* Item identifier */
int data; /* Other application data */
struct cjxln listnode; /* List node */
struct cjxlk keynode; /* Key list node */
};

static struct cjxlh list; /* List header */

struct uobject * CJ_CCPP listtail(void) {

return ((struct uobject *) cjlmtail(&list));
}

AMX Procedures KADAK 247

cjmbbuild cjmbbuild

Purpose Build (Create) a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbbuild(CJ_ID *mbidp,

struct cjxmbdef *mbdefp);

Description mbidp is a pointer to storage for the mailbox id of the mailbox allocated to
the caller.

mbdefp is a pointer to a mailbox definition. Structure cjxmbdef is defined
in file CJZZZSD.H as follows:

struct cjxmbdef {
CJ_TAGDEF xmbdtag; /* Mailbox tag */
int xmbddepth; /* Message queue depth */
};

xmbdtag is a 4-character array for the mailbox name tag.

xmbddepth is an integer defining the maximum number of message
envelopes which can reside in the mailbox's message queue.
(0 <= xmbddepth <= 32767).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mbidp contains a valid mailbox id.

Errors returned:
For all errors, the mailbox id at *mbidp is undefined on return.
CJ_ERMBNONE No free mailbox
CJ_ERMBDEPTH Invalid message queue depth

...more

248 KADAK AMX Procedures

Example #include "CJZZZ.H"
#define DEPTH 32

static struct cjxmbdef mboxdefA = {
{"Mb-A"}, /* Mailbox tag */
DEPTH /* Message queue depth */
};

CJ_ID CJ_CCPP makeboxA(void) {
CJ_ID mboxid;

if (cjmbbuild(&mboxid, &mboxdefA) == CJ_EROK)
return(mboxid);

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makeboxB(void) {
struct cjxmbdef mboxdefB;
CJ_ID mboxid;

*(CJ_TYTAG *)&mboxdefB.xmbdtag = cjcftag("Mb-B");
mboxdefB.xmbddepth = DEPTH;

if (cjmbbuild(&mboxid, &mboxdefB) == CJ_EROK)
return(mboxid);

else return(CJ_IDNULL); /* Error */
}

See Also cjmbcreate, cjmbdelete, cjksfind

AMX Procedures KADAK 249

cjmbcreate cjmbcreate

Purpose Create a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbcreate(CJ_ID *mbidp, char *tag,

int depth);

Description mbidp is a pointer to storage for the mailbox id of the mailbox allocated to
the caller.

tag is a pointer to a 4-character string for the mailbox name tag.

depth is an integer defining the maximum number of message envelopes
which can reside in the mailbox's message queue.
(0 <= depth <= 32767).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mbidp contains a valid mailbox id.

Errors returned:
For all errors, the mailbox id at *mbidp is undefined on return.
CJ_ERMBNONE No free mailbox
CJ_ERMBDEPTH Invalid message queue depth

Example #include "CJZZZ.H"
#define DEPTH 32

CJ_ID CJ_CCPP makeboxC(void) {
CJ_ID mboxid;

if (cjmbcreate(&mboxid, "Mb-C", DEPTH) == CJ_EROK)
return(mboxid);

else return(CJ_IDNULL); /* Error */
}

See Also cjmbbuild, cjmbdelete, cjksfind

250 KADAK AMX Procedures

cjmbdelete cjmbdelete

Purpose Delete a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbdelete(CJ_ID mboxid);

Description mboxid is the mailbox id of the mailbox to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMBID Invalid mailbox id
CJ_ERMBBUSY Mailbox is busy

Messages may still be present in the mailbox or
one or more tasks may be waiting for a message to
arrive at the mailbox.

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the mailbox. Failure to observe this
restriction may lead to unexpected and unpredictable faults.

See Also cjmbbuild, cjmbcreate

AMX Procedures KADAK 251

cjmbflush cjmbflush

Purpose Flush Messages From a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbflush(CJ_ID mboxid);

Description mboxid is the mailbox id of the mailbox to be flushed.

All message envelopes present in the mailbox message queue are released
for reuse by AMX. The flushed messages are acknowledged with a
warning status of CJ_WRTKFLUSH allowing the task which sent the
message, if still waiting, to resume with the warning indication.

If the mailbox is empty but has one or more tasks waiting for a message,
the tasks are forced to resume execution with the warning status
CJ_WRMBFLUSH.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMBID Invalid mailbox id

Restrictions The content of all flushed messages is lost. Do not flush any mailbox
which, by design, could have messages present which contain such things
as buffer pointers, memory block pointers or object ids which, if lost,
could lead to lost resources within your application.

See Also cjmbsend, cjmbwait

252 rev9 KADAK AMX Procedures

cjmbsend cjmbsend

Purpose Send a Message to a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbsend(CJ_ID mboxid, void *msgp, int wack);

Description mboxid is the mailbox id of the mailbox of interest.

msgp is an array name or pointer to CJ_MAXMSZ consecutive bytes that
form the message to be sent to the mailbox. The message variable must
be integer aligned. CJ_MAXMSZ is configured in the User Parameter
Table and is defined in file CJZZZAPP.H. For convenience, a maximum
size AMX message structure cjxmsg is defined in file CJZZZSD.H.

wack is an integer which, if set to CJ_YES, indicates that the sending task
wishes to wait for an acknowledgement that the message has been
received by some other task. If wack = CJ_NO, then the sending task
will not wait for acknowledgement. ISPs, Timer Procedures and
Restart Procedures must always set wack = CJ_NO.

Interrupts � Disabled � Enabled � Restored
(Not in ISP)

Returns Error status is returned.
CJ_EROK Call successful
If a task is waiting for the message, the CJ_MAXMSZ bytes of the
message at *msgp are copied directly to the waiting task's message
buffer. Otherwise, the message is copied into a message envelope
which is added to the end of the mailbox message queue.

Errors returned:
CJ_ERMBID Invalid mailbox id
CJ_ERMBFULL Mailbox is full
CJ_ERNOENVLOP No free message envelope
CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

Message answer-back from task which received the message:
status > 0 Application defined value
CJ_WRTKFLUSH Mailbox was flushed while task was waiting for

message acknowledgement

...more

AMX Procedures KADAK 253

Task Switch If a task was waiting at the mailbox for a message, a task switch may
occur. If the caller is a task, a task switch will occur if the waiting task is
of higher priority than the caller. If the caller is an ISP, a task switch will
occur when the interrupt service is complete if the waiting task is of higher
priority than the interrupted task.

If the calling task waits for acknowledgement of its message, there will be
an immediate task switch to the next lower priority ready task.

Example #include "CJZZZ.H"
extern CJ_ID mboxA; /* Mailbox A id */

union umessage {
struct cjxmsg umaxmsg; /* Biggest AMX message */
struct usermsg umsg; /* Define usermsg elsewhere */
};

CJ_ERRST CJ_CCPP sendmboxA(void) {
CJ_ERRST status; /* Error status */
union umessage msg; /* Message to send */

/* Create message 1 */
msg.umsg.msgnum = 1;
msg.umsg.msgpntr = "Message number 1";

/* Send message 1 */
/* Do not wait for ack */

if ((status = cjmbsend(mboxA, &msg, CJ_NO)) != CJ_EROK)
return (status);

/* Create message 2 */
msg.umsg.msgnum = 2;
msg.umsg.msgpntr = "Message number 2";

/* Send message 2 */
/* Wait for ack */

status = cjmbsend(mboxA, &msg, CJ_YES);
return (status);
}

See Also cjmbwait

254 KADAK AMX Procedures

cjmbstatus cjmbstatus

Purpose Get Status of a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbstatus(CJ_ID mboxid,

struct cjxmbsts *statusp);

Description mboxid is the mailbox id of the mailbox of interest.

statusp is a pointer to storage for the mailbox status. Structure cjxmbsts
is defined in file CJZZZSD.H as follows:

struct cjxmbsts {
CJ_TYTAG xmbstag; /* Mailbox tag */
int xmbsdepth; /* Message queue depth */
int xmbscount; /* Message count */

/* >0 # of messages in */
/* message queue */
/* 0 empty */
/* -n empty; n tasks waiting */

};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the mailbox status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_ERMBID Invalid mailbox id

AMX Procedures KADAK rev9 255

cjmbwait cjmbwait

Purpose Wait for a Message from a Mailbox

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmbwait(CJ_ID mboxid, void *msgp,

int priority, CJ_TIME timeout);

Description mboxid is the mailbox id of the mailbox of interest.

msgp is an array name or pointer to CJ_MAXMSZ consecutive bytes of
storage into which the message will be copied when available. The
message storage variable must be integer aligned. CJ_MAXMSZ is
configured in the User Parameter Table and is defined in file
CJZZZAPP.H. For convenience, a maximum size AMX message
structure cjxmsg is defined in file CJZZZSD.H.

priority is the priority at which the caller wishes to wait (0 = highest).
To wait in FIFO order, have all callers use the same value for
priority.

timeout > 0 is the maximum interval measured in system ticks which the
caller is prepared to wait for a message to arrive. If timeout = 0, the
caller will wait forever for a message. If timeout < 0, the caller will
not wait if a message is not immediately available.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*msgp contains the CJ_MAXMSZ bytes of the message.

Warnings returned:
For all warnings, the message at *msgp is undefined on return.
CJ_WRMBEMPTY Mailbox is empty
CJ_WRTMOUT Timed out before message available
CJ_WRMBFLUSH Mailbox was flushed while task was waiting

Errors returned:
For all errors, the message at *msgp is undefined on return.
CJ_ERMBID Invalid mailbox id
CJ_ERAKNEED Task has an unacknowledged answer-back

message which it must acknowledge before
it can get another message from any mailbox
or message exchange.

CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

...more

256 KADAK AMX Procedures

Task Switch If the calling task waits for a message, there will be an immediate task
switch to the next lower priority ready task.

Example #include "CJZZZ.H"
extern CJ_ID mboxA; /* Mailbox A id */

union umessage {
struct cjxmsg umaxmsg; /* Biggest AMX message */
struct usermsg umsg; /* Define usermsg elsewhere */
};

void CJ_CCPP waitmboxA(void) {
union umessage msg; /* Received message */

/* Wait at priority 10 */
/* for up to 10 seconds */

if (cjmbwait(mboxA, &msg, 10, cjtmconvert(10000))
== CJ_EROK) {

:
: /* Process message at msg.umsg */
:

/* Acknowledge message */
cjtkmsgack(CJ_AKBASE + 5);
}

}

See Also cjmbsend, cjtkmsgack

AMX Procedures KADAK 257

cjmmbuild cjmmbuild

Purpose Build (Create) a Memory Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmbuild(CJ_ID *mpidp,

struct cjxmpdef *mpdefp);

Description mpidp is a pointer to storage for the memory pool id of the memory pool
allocated to the caller.

mpdefp is a pointer to a memory pool definition. Structure cjxmpdef is
defined in file CJZZZSD.H as follows:

struct cjxmpdef {
CJ_TAGDEF xmpdtag; /* Memory pool tag */
void *xmpdmemp; /* Memory pointer */
unsigned long xmpdmsize; /* Size of memory */
};

xmpdtag is a 4-character array for the memory pool name tag.

xmpdmemp is a pointer to a memory section to be assigned to the memory
pool. The memory section must be a long-aligned region of contiguous
alterable memory (RAM).

If the memory pool is to be created without any initial memory in the
pool, set xmpdmemp to NULL. Memory sections must then be
dynamically assigned to the memory pool using cjmmsection.

xmpdmsize is the size, in bytes, of the memory section referenced by
xmpdmemp. The size must be a multiple of 4 and >= CJ_MINSMEM
(usually 128). If no memory section is to be assigned to the memory
pool (xmpdmemp = NULL), set xmpdmsize = 0.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mpidp contains a valid memory pool id.

Errors returned:
For all errors, the memory pool id at *mpidp is undefined on
return.
CJ_ERMMNONE No free memory pool
CJ_ERMMALIGN Memory section not long aligned
CJ_ERMMSIZE Memory section size is too small

258 KADAK AMX Procedures

Example #include "CJZZZ.H"
#define MEMSIZE (128*1024L)

static long CJ_CCHUGE poolmemA[MEMSIZE/sizeof(long)];
static long CJ_CCHUGE poolmemB[MEMSIZE/sizeof(long)];

static struct cjxmpdef pooldefA = {
{"Mp-A"}, /* Memory pool tag */
poolmemA, /* Memory pointer */
MEMSIZE /* Size of memory */
};

CJ_ID CJ_CCPP makepoolA(void) {
CJ_ID poolid;

if (cjmmbuild(&poolid, &pooldefA) == CJ_EROK)
return(poolid);

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makepoolB(void) {
struct cjxmpdef pooldefB;
CJ_ID poolid;

*(CJ_TYTAG *)&pooldefB.xmpdtag = cjcftag("Mp-B");
pooldefB.xmpdmemp = NULL;
pooldefB.xmpdmsize = 0;

if (cjmmbuild(&poolid, &pooldefB) == CJ_EROK) {
cjmmsection(poolid, poolmemB, MEMSIZE);
return(poolid);
}

else return(CJ_IDNULL); /* Error */
}

See Also cjmmcreate, cjmmdelete, cjmmsection, cjksfind

AMX Procedures KADAK 259

cjmmcreate cjmmcreate

Purpose Create a Memory Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmcreate(CJ_ID *mpidp, char *tag,

void *memp, unsigned long memsize);

Description mpidp is a pointer to storage for the memory pool id of the memory pool
allocated to the caller.

tag is a pointer to a 4-character string for the memory pool name tag.

memp is a pointer to a memory section to be assigned to the memory pool.
The memory section must be a long-aligned region of contiguous
alterable memory (RAM).

If the memory pool is to be created without any initial memory in the
pool, set memp to NULL. Memory sections must then be dynamically
assigned to the memory pool using cjmmsection.

memsize is the size, in bytes, of the memory section referenced by memp.
The size must be a multiple of 4 and >= CJ_MINSMEM (usually 128). If
no memory section is to be assigned to the memory pool (memp =
NULL), set memsize = 0.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mpidp contains a valid memory pool id.

Errors returned:
For all errors, the memory pool id at *mpidp is undefined on
return.
CJ_ERMMNONE No free memory pool
CJ_ERMMALIGN Memory section not long aligned
CJ_ERMMSIZE Memory section size is too small

...more

260 KADAK AMX Procedures

Example #include "CJZZZ.H"
#define MEMSIZE (128*1024L)

static long CJ_CCHUGE poolmemC[MEMSIZE/sizeof(long)];

CJ_ID CJ_CCPP makepoolC(void) {
CJ_ID poolid;

if (cjmmcreate(&poolid, "Mp-C",
poolmemC, MEMSIZE) == CJ_EROK)

return(poolid);
else return(CJ_IDNULL); /* Error */
}

See Also cjmmbuild, cjmmdelete, cjmmsection, cjksfind

AMX Procedures KADAK 261

cjmmdelete cjmmdelete

Purpose Delete a Memory Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmdelete(CJ_ID poolid);

Description poolid is the memory pool id of the memory pool to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMMID Invalid memory pool id

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the memory pool. Failure to observe
this restriction may lead to unexpected and unpredictable faults.

See Also cjmmbuild, cjmmcreate

262 KADAK AMX Procedures

cjmmfree cjmmfree

Purpose Free Previously Allocated Memory Block

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmfree(void *memp);

Description memp is a pointer to a memory block allocated by cjmmget.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMMBADP memp does not reference a valid memory block

from a memory pool
CJ_ERMMNOUSE Memory block not in use

The memory block use count is decremented by one. If the use count goes
to zero, the memory block is returned to its memory pool. The memory
block is immediately coalesced with adjacent free memory blocks.

If the memory block use count does not go to zero, the memory block
remains in use by other tasks in your system. The caller must not make
any further references to the memory block.

See Also cjmmget, cjmmuse

AMX Procedures KADAK 263

cjmmget cjmmget

Purpose Get a Memory Block

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmget(CJ_ID poolid, unsigned long size,

void *mempp, unsigned long *sizep);

Description poolid is the id of the memory pool from which the memory block is to
be obtained.

size is the number of bytes of memory required.

mempp is a pointer to storage for the returned pointer to the memory block.
mempp is prototyped as a void * allowing it to be a pointer to any type
of pointer without the necessity of casts to keep some C compilers
happy.

sizep is a pointer to storage for the actual usable size in bytes of the
allocated memory block. *sizep may be slightly larger than size. It
is valid to replace sizep with &size to update your size variable.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mempp contains a valid memory block pointer.
The memory block use count is set to one.

Warnings returned:
The content of *bufpp is undefined.
CJ_WRMMNOMEM No free memory block available

*sizep is the size of the largest currently available
block of memory.

Errors returned:
The content of *mempp and *sizep is undefined.
CJ_ERMMID Invalid memory pool id

See Also cjmmfree, cjmmuse, cjmmresize, cjmmsize

264 KADAK AMX Procedures

cjmmid cjmmid

Purpose Get a Memory Block's Memory Pool Id

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmid(CJ_ID *mpidp, void *memp);

Description mpidp is a pointer to storage for the memory pool id of the memory pool
to which the memory block memp belongs.

memp is a pointer to a memory block obtained by a cjmmget call.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mpidp contains a valid memory pool id.

Errors returned:
For all errors, the memory pool id at *mpidp is undefined on
return.
CJ_ERMMBADP memp does not reference a valid memory block

from a memory pool

See Also cjmmget

AMX Procedures KADAK 265

cjmmresize cjmmresize

Purpose Change Size of a Memory Block

You can grow or shrink a memory block. A memory block can always be
shrunk. A memory block can only be increased in size if there is free
memory immediately beyond the current end of the memory block.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmresize(void *memp, unsigned long size);

Description memp is a pointer to a memory block allocated by cjmmget.

size is the required final size for the memory block. If size is smaller
than the minimum allowable block size, the memory block will shrink
to the minimum size allowed.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMMBADP memp does not reference a valid memory block

from a memory pool
CJ_ERMMGROW Cannot grow memory block

The adjacent memory is not free or, if free,
is too small.

See Also cjmmget, cjmmsize

266 KADAK AMX Procedures

cjmmsection cjmmsection

Purpose Add a Memory Section to a Memory Pool

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmsection(CJ_ID poolid, void *memp,

unsigned long memsize);

Description poolid is the id of the memory pool to which the memory section is to be
assigned.

memp is a pointer to a memory section to be assigned to the memory pool.
The memory section must be a long-aligned region of contiguous
alterable memory (RAM).

memsize is the size, in bytes, of the memory section referenced by memp.
The size must be a multiple of 4 and >= CJ_MINSMEM (usually 128).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMMID Invalid memory pool id
CJ_ERMMALIGN Memory section not long aligned
CJ_ERMMSIZE Memory section size is too small

See Also cjmmbuild, cjmmcreate

AMX Procedures KADAK 267

cjmmsize cjmmsize

Purpose Get Size of a Memory Block

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmsize(void *memp, unsigned long *sizep);

Description memp is a pointer to a memory block allocated by cjmmget.

sizep is a pointer to storage for the size, in bytes, of the memory block
referenced by memp.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*sizep contains the memory block size.

Errors returned:
For all errors, the memory block size at *sizep is undefined on
return.
CJ_ERMMBADP memp does not reference a valid memory block

from a memory pool
CJ_ERMMNOUSE Memory block not in use

See Also cjmmget, cjmmresize

268 KADAK AMX Procedures

cjmmuse cjmmuse

Purpose Add to a Memory Block's Use Count

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmmuse(void *memp, int increment);

Description memp is a pointer to a memory block obtained by a cjmmget call.

increment is the signed value to be added to the memory block use count.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
Memory block use count = memory block use count + increment.

Errors returned:
For all errors, the memory block use count is left unaltered.
CJ_ERMMBADP memp does not reference a valid memory block

from a memory pool
CJ_ERMMNOUSE Memory block not in use
CJ_ERMMUSEOVF Memory block use count overflow or underflow

The use count must remain > 0.

Once a memory block's use count is increased to n, the memory block will
not be returned to the free list of its memory pool until n calls to cjmmfree
are made to release the memory block.

See Also cjmmget, cjmmfree

AMX Procedures KADAK 269

cjmxbuild cjmxbuild

Purpose Build (Create) a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxbuild(CJ_ID *mxidp,

struct cjxmxdef *mxdefp);

Description mxidp is a pointer to storage for the message exchange id of the message
exchange allocated to the caller.

mxdefp is a pointer to a message exchange definition. Structure cjxmxdef
is defined in file CJZZZSD.H as follows:

struct cjxmxdef {
CJ_TAGDEF xmxdtag; /* Message exchange tag */

/* Message queue depths */
int xmxddepth[CJ_MAXMXBOX];
};

xmxdtag is a 4-character array for the message exchange name tag.

xmxddepth is an array of CJ_MAXMXBOX (4) integers defining the maximum
number of message envelopes which can reside in each of the message
exchange's message queues.
(0 <= xmxddepth <= 32767).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mxidp contains a valid message exchange id.

Errors returned:
For all errors, the message exchange id at *mxidp is undefined on
return.
CJ_ERMXNONE No free message exchange
CJ_ERMXDEPTH Invalid message queue depth

...more

270 KADAK AMX Procedures

Example #include "CJZZZ.H"
#define DEPTH0 32
#define DEPTH3 16

static struct cjxmxdef msgxdefA = {
{"Mx-A"}, /* Message exchange tag */
DEPTH0, 0, 0, DEPTH3 /* Message queue depths */
};

CJ_ID CJ_CCPP makemsgxA(void) {
CJ_ID msgxid;

if (cjmxbuild(&msgxid, &msgxdefA) == CJ_EROK)
return(msgxid);

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makemsgxB(void) {
struct cjxmxdef msgxdefB;
CJ_ID msgxid;

*(CJ_TYTAG *)&msgxdefB.xmxdtag = cjcftag("Mx-B");
msgxdefB.xmxddepth[0] = DEPTH0;
msgxdefB.xmxddepth[1] = 0;
msgxdefB.xmxddepth[2] = 0;
msgxdefB.xmxddepth[3] = DEPTH3;

if (cjmxbuild(&msgxid, &msgxdefB) == CJ_EROK)
return(msgxid);

else return(CJ_IDNULL); /* Error */
}

See Also cjmxcreate, cjmxdelete, cjksfind

AMX Procedures KADAK 271

cjmxcreate cjmxcreate

Purpose Create a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxcreate(CJ_ID *mxidp, char *tag,

int depth0, int depth1,
int depth2, int depth3);

Description mxidp is a pointer to storage for the message exchange id of the message
exchange allocated to the caller.

tag is a pointer to a 4-character string for the message exchange name tag.

depthn are integers defining the maximum number of message envelopes
which can reside on each of the message exchange's message queues.
(0 <= depthn <= 32767).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*mxidp contains a valid message exchange id.

Errors returned:
For all errors, the message exchange id at *mxidp is undefined on
return.
CJ_ERMXNONE No free message exchange
CJ_ERMXDEPTH Invalid message queue depth

Example #include "CJZZZ.H"
#define DEPTH0 32
#define DEPTH3 16

CJ_ID CJ_CCPP makemsgxC(void) {
CJ_ID msgxid;

if (cjmxcreate(&msgxid, "Mx-C", DEPTH0, 0, 0, DEPTH3)
== CJ_EROK)

return(msgxid);
else return(CJ_IDNULL); /* Error */
}

See Also cjmxbuild, cjmxdelete, cjksfind

272 KADAK AMX Procedures

cjmxdelete cjmxdelete

Purpose Delete a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxdelete(CJ_ID msgxid);

Description msgxid is the message exchange id of the message exchange to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMXID Invalid message exchange id
CJ_ERMXBUSY Message exchange is busy

Messages may still be present in the message
exchange or one or more tasks may be waiting
for a message to arrive at the message exchange.

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the message exchange. Failure to
observe this restriction may lead to unexpected and unpredictable faults.

See Also cjmxbuild, cjmxcreate

AMX Procedures KADAK 273

cjmxflush cjmxflush

Purpose Flush Messages From a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxflush(CJ_ID msgxid);

Description msgxid is the message exchange id of the message exchange to be flushed.

All message envelopes present in any of the message exchange's message
queues are released for reuse by AMX. The flushed messages are
acknowledged with a warning status of CJ_WRTKFLUSH allowing the task
which sent the message, if still waiting, to resume with the warning
indication.

If the message exchange is empty but has one or more tasks waiting for a
message, the tasks are forced to resume execution with the warning status
CJ_WRMXFLUSH.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERMXID Invalid message exchange id

Restrictions The content of all flushed messages is lost. Do not flush any message
exchange which, by design, could have messages present which contain
such things as buffer pointers, memory block pointers or object ids which,
if lost, could lead to lost resources within your application.

See Also cjmxsend, cjmxwait

274 rev9 KADAK AMX Procedures

cjmxsend cjmxsend

Purpose Send a Message to a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxsend(CJ_ID msgxid, void *msgp,

int wack, int msgpriority);

Description msgxid is the message exchange id of the message exchange of interest.

msgpriority is the priority of the message.
(0 = highest; 3 = lowest).

msgp is an array name or pointer to CJ_MAXMSZ consecutive bytes that
form the message to be sent to the message exchange. The message
variable must be integer aligned. CJ_MAXMSZ is configured in the User
Parameter Table and is defined in file CJZZZAPP.H. For convenience, a
maximum size AMX message structure cjxmsg is defined in file
CJZZZSD.H.

wack is an integer which, if set to CJ_YES, indicates that the sending task
wishes to wait for an acknowledgement that the message has been
received by some other task. If wack = CJ_NO, then the sending task
will not wait for acknowledgement. ISPs, Timer Procedures and
Restart Procedures must always set wack = CJ_NO.

Interrupts � Disabled � Enabled � Restored
(Not in ISP)

Returns Error status is returned.
CJ_EROK Call successful
If a task is waiting for the message, the CJ_MAXMSZ bytes of the
message at *msgp are copied directly to the waiting task's message
buffer. Otherwise, the message is copied into a message envelope
which is added to the end of the message exchange message queue of
priority msgpriority.

Errors returned:
CJ_ERMXID Invalid message exchange id
CJ_ERMXMBNUM Invalid message priority (must be 0 to 3)
CJ_ERMXFULL The message queue at priority msgpriority is full
CJ_ERNOENVLOP No free message envelope
CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

...more

AMX Procedures KADAK 275

Returns ...continued

Message answer-back from task which received the message:
status > 0 Application defined value
CJ_WRTKFLUSH Message exchange was flushed while task was

waiting for message acknowledgement

Task Switch If a task was waiting at the message exchange for a message, a task switch
may occur. If the caller is a task, a task switch will occur if the waiting
task is of higher priority than the caller. If the caller is an ISP, a task
switch will occur when the interrupt service is complete if the waiting task
is of higher priority than the interrupted task.

If the calling task waits for acknowledgement of its message, there will be
an immediate task switch to the next lower priority ready task.

Example #include "CJZZZ.H"
extern CJ_ID msgxA; /* Message exchange A id */

union umessage {
struct cjxmsg umaxmsg; /* Biggest AMX message */
struct usermsg umsg; /* Define usermsg elsewhere */
};

CJ_ERRST CJ_CCPP sendmsgxA(void) {
CJ_ERRST status; /* Error status */
union umessage msg; /* Message to send */

/* Create message 1 */
msg.umsg.msgnum = 1;
msg.umsg.msgpntr = "Message number 1";

/* Send message 1; priority 0*/
/* Do not wait for ack */

if ((status = cjmxsend(msgxA, &msg, CJ_NO, 0))
!= CJ_EROK)

return (status);

/* Create message 2 */
msg.umsg.msgnum = 2;
msg.umsg.msgpntr = "Message number 2";

/* Send message 2; priority 3*/
/* Wait for ack */

status = cjmxsend(msgxA, &msg, CJ_YES, 3);
return (status);
}

See Also cjmxwait

276 KADAK AMX Procedures

cjmxstatus cjmxstatus

Purpose Get Status of a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxstatus(CJ_ID msgxid,

struct cjxmxsts *statusp);

Description msgxid is the message exchange id of the message exchange of interest.

statusp is a pointer to storage for the message exchange status. Structure
cjxmxsts is defined in file CJZZZSD.H as follows:

struct cjxmxsts {
CJ_TYTAG xmxstag; /* Message exchange tag */
int xmxsqueue; /* Message availability */

/* >0 # of messages in */
/* message queues */
/* 0 all queues empty */
/* -n empty; n tasks waiting */
/* Message queue depths */

int xmxsdepth[CJ_MAXMXBOX];
/* Message queue counts */

int xmxscount[CJ_MAXMXBOX];
};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the message exchange status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_ERMXID Invalid message exchange id

AMX Procedures KADAK rev9 277

cjmxwait cjmxwait

Purpose Wait for a Message from a Message Exchange

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjmxwait(CJ_ID msgxid, void *msgp,

int priority, CJ_TIME timeout);

Description msgxid is the message exchange id of the message exchange of interest.

msgp is an array name or pointer to CJ_MAXMSZ consecutive bytes of
storage into which the message will be copied when available. The
message storage variable must be integer aligned. CJ_MAXMSZ is
configured in the User Parameter Table and is defined in file
CJZZZAPP.H. For convenience, a maximum size AMX message
structure cjxmsg is defined in file CJZZZSD.H.

priority is the priority at which the caller wishes to wait (0 = highest).
To wait in FIFO order, have all callers use the same value for
priority.

timeout > 0 is the maximum interval measured in system ticks which the
caller is prepared to wait for a message to arrive. If timeout = 0, the
caller will wait forever for a message. If timeout < 0, the caller will
not wait if a message is not immediately available.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*msgp contains the CJ_MAXMSZ bytes of the message.

Warnings returned:
For all warnings, the message at *msgp is undefined on return.
CJ_WRMXEMPTY Message exchange is empty
CJ_WRTMOUT Timed out before message available
CJ_WRMXFLUSH Message exchange was flushed while task was

waiting

...more

278 rev9 KADAK AMX Procedures

Returns ...continued

Errors returned:
For all errors, the message at *msgp is undefined on return.
CJ_ERMXID Invalid message exchange id
CJ_ERAKNEED Task has an unacknowledged answer-back

message which it must acknowledge before
it can get another message from any mailbox
or message exchange.

CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

Task Switch If the calling task waits for a message, there will be an immediate task
switch to the next lower priority ready task.

Example #include "CJZZZ.H"
extern CJ_ID msgxA; /* Message exchange A id */

union umessage {
struct cjxmsg umaxmsg; /* Biggest AMX message */
struct usermsg umsg; /* Define usermsg elsewhere */
};

void CJ_CCPP waitmsgxA(void) {
union umessage msg; /* Received message */

/* Wait at priority 10 */
/* for up to 10 seconds */

if (cjmxwait(msgxA, &msg, 10, cjtmconvert(10000))
== CJ_EROK) {

:
: /* Process message at msg.umsg */
:

/* Acknowledge message */
cjtkmsgack(CJ_AKBASE + 6);
}

}

See Also cjmxsend, cjtkmsgack

AMX Procedures KADAK rev9 279

cjrmbuild cjrmbuild

Purpose Build (Create) a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmbuild(CJ_ID *rmidp,

struct cjxsmdef *rmdefp);

Description rmidp is a pointer to storage for the semaphore id of the resource
semaphore allocated to the caller.

rmdefp is a pointer to a resource semaphore definition. Structure
cjxsmdef is defined in file CJZZZSD.H as follows:

struct cjxsmdef {
CJ_TAGDEF xsmdtag; /* Semaphore tag */
int xsmdvalue; /* Resource type */
};

xsmdtag is a 4-character array for the resource semaphore name tag.

xsmdvalue must be one of the following values to specify the type of
resource semaphore to be created. The allowable resource types are
defined in file CJZZZSD.H as follows:
CJ_RMBASIC Basic resource semaphore
CJ_RMINHERIT Resource semaphore with priority inheritance

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*rmidp contains a valid semaphore id.

Errors returned:
For all errors, the semaphore id at *rmidp is undefined on return.
CJ_ERSMVALUE Invalid semaphore type (see note below)
CJ_ERSMNONE No free semaphore

Note The semaphore type must be CJ_RMBASIC or CJ_RMINHERIT. If value
xsmdvalue >= 0 but <= 32767 (0x7FFF), you will create a counting or
bounded semaphore without an error being reported.

...more

280 rev9 KADAK AMX Procedures

Example #include "CJZZZ.H"

static struct cjxsmdef resourcedefA = {
{"Rm-A"}, /* Resource semaphore tag */
CJ_RMBASIC /* Basic resource semaphore */
};

CJ_ID CJ_CCPP makeresourceA(void) {
CJ_ID resourceid;

if (cjrmbuild(&resourceid, &resourcedefA) == CJ_EROK)
return(resourceid);

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makeresourceB(void) {
struct cjxsmdef resourcedefB;
CJ_ID resourceid;

*(CJ_TYTAG *)&resourcedefB.xsmdtag = cjcftag("Rm-B");
resourcedefB.xsmdvalue = CJ_RMINHERIT;

if (cjrmbuild(&resourceid, &resourcedefB) == CJ_EROK)
return(resourceid);

else return(CJ_IDNULL); /* Error */
}

See Also cjrmcreate, cjrmdelete, cjksfind

AMX Procedures KADAK rev9 281

cjrmcreate cjrmcreate
cjrmcreatex cjrmcreatex

Purpose Create a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmcreate(CJ_ID *rmidp, char *tag);
CJ_ERRST CJ_CCPP cjrmcreatex(CJ_ID *rmidp, char *tag, int type);

Description Use cjrmcreate to create a basic resource semaphore.
Use cjrmcreatex to create a basic or priority inheritance resource semaphore.

rmidp is a pointer to storage for the semaphore id of the resource
semaphore allocated to the caller.

tag is a pointer to a 4-character string for the resource semaphore name tag.

type must be one of the following values to specify the type of resource
semaphore to be created. The allowable resource types are defined in
file CJZZZSD.H as follows:
CJ_RMBASIC Basic resource semaphore
CJ_RMINHERIT Resource semaphore with priority inheritance

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*rmidp contains a valid semaphore id.

Errors returned:
For all errors, the semaphore id at *rmidp is undefined on return.
CJ_ERSMVALUE Invalid semaphore type (see cjrmbuild note)
CJ_ERSMNONE No free semaphore

Example #include "CJZZZ.H"

CJ_ID CJ_CCPP makeresourceC(void) {
CJ_ID resourceid;

if (cjrmcreate(&resourceid, "Rm-C") == CJ_EROK)
return(resourceid);

else return(CJ_IDNULL);
}

See Also cjrmbuild, cjrmdelete, cjksfind

282 rev9 KADAK AMX Procedures

cjrmdelete cjrmdelete

Purpose Delete a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmdelete(CJ_ID resourceid);

Description resourceid is the semaphore id of the resource semaphore to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMBUSY Resource semaphore is busy

One or more tasks are waiting for the resource.

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the resource semaphore. Failure to
observe this restriction may lead to unexpected and unpredictable faults.

See Also cjrmbuild, cjrmcreate

AMX Procedures KADAK rev9 283

cjrmfree cjrmfree

Purpose Unconditionally Free a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmfree(CJ_ID resourceid);

Description resourceid is the semaphore id of a resource semaphore acquired by a
call to cjrmrsv.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The resource semaphore nest count is immediately set to zero and the
resource is freed. If a priority inheritance resource is being freed and
the task priority of the owner has been raised to avoid a priority
inversion, the free resource will be granted to the high priority task
which is anxiously waiting for the resource. Otherwise, the resource
will immediately be given to the task (if any) which is waiting at the
head of the resource semaphore wait queue.

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMOWNER Resource semaphore cannot be released since

the calling task does not own the resource.
CJ_ERNOENVLOP No message envelopes available

Task Switch If the resource is given to a task waiting for the resource, a task switch will
occur if the waiting task is of higher priority than the caller.

If a priority inheritance resource is freed by a task whose priority was
raised to avoid a priority inversion, that task's priority will be restored
upon release of the resource.

Note A task owning more than one priority inheritance resource can release the
resources in any order. However, it is recommended that such resources
be freed in the opposite order to which they are reserved.

Restrictions You must not attempt to free a counting or bounded semaphore. Use
cjsmsignal for that purpose.

See Also cjrmrls, cjrmrsv

284 rev9 KADAK AMX Procedures

cjrmrls cjrmrls

Purpose Release a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmrls(CJ_ID resourceid);

Description resourceid is the semaphore id of a resource semaphore acquired by a
call to cjrmrsv.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The resource semaphore nest count is decremented by one. If the nest
count goes to zero, the resource is freed. If a priority inheritance
resource is being freed and the task priority of the owner has been
raised to avoid a priority inversion, the free resource will be granted to
the high priority task which is anxiously waiting for the resource.
Otherwise, the resource will immediately be given to the task (if any)
which is waiting at the head of the resource semaphore wait queue.

If the resource semaphore nest count does not go to zero, the calling
task retains ownership of the resource.

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMOWNER Resource semaphore cannot be released because

the calling task does not own the resource.
CJ_ERNOENVLOP No message envelopes available

Task Switch If the resource is given to a task waiting for the resource, a task switch will
occur if the waiting task is of higher priority than the caller.

If a priority inheritance resource is freed by a task whose priority was
raised to avoid a priority inversion, that task's priority will be restored
upon release of the resource.

Note A task owning more than one priority inheritance resource can release the
resources in any order. However, it is recommended that such resources
be freed in the opposite order to which they are reserved.

Restrictions You must not attempt to release a counting or bounded semaphore. Use
cjsmsignal for that purpose.

See Also cjrmfree, cjrmrsv

AMX Procedures KADAK rev9 285

cjrmrsv cjrmrsv

Purpose Reserve a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmrsv(CJ_ID resourceid, int priority,

CJ_TIME timeout);

Description resourceid is the semaphore id of the resource semaphore of interest.

priority is the priority at which the caller wishes to wait (0 = highest).
To wait in FIFO order, have all callers use the same value for
priority. This parameter is not used if timeout is < 0.

timeout > 0 is the maximum interval measured in system ticks which the
caller is prepared to wait for the resource. If timeout = 0, the caller
will wait forever for the resource. If timeout < 0, the caller will not
be allowed to wait for the resource.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The calling task owns the resource. Upon first acquiring ownership of
the resource, the resource semaphore nest count is set to one.

It is permissible for a task which owns the resource to call cjrmrsv to
reserve the resource again. The resource semaphore nest count is
incremented by one for each call to cjrmrsv resulting in nested
ownership. The resource owner must call cjrmrls once for each of its
calls to cjrmrsv. Alternatively, the resource owner can call cjrmfree
to unconditionally free the resource.

Warnings returned:
CJ_WRSMINUSE Resource in use by another task
CJ_WRTMOUT Timed out before a basic resource became available
CJ_WRTMOUT The timeout interval has expired. The owner of the

priority inheritance resource has not yet released it.
However, other activity has allowed the task requesting
the resource to resume and detect the timeout.

CJ_WRSMMISS The priority inheritance resource was released by its
owner. However, the timeout interval had expired.
Ownership of the resource has been denied because
the timeout deadline was missed.

...more

286 rev9 KADAK AMX Procedures

Returns ...continued

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMUV Resource semaphore usage violation

Tasks which own any priority inheritance resources
cannot wait for a basic resource semaphore.
This error will also occur if tasks are deadlocked or
thrashing unsuccessfully trying to resolve a potential
priority inversion.

Task Switch If the task waits for a basic resource, there will be an immediate task
switch to the next lowest priority ready task.

A task requesting ownership of a priority inheritance resource will never
have to wait unless the resource is owned by another lower priority task.
Instead, the low priority task will be hoisted to a priority immediately
above that of the requesting task, resulting in an immediate task switch to
the task which owns the resource. When the resource is eventually
released, the priority of the previous owner will be restored and the
resource will be granted to the task which has been anxiously awaiting its
availability. There will be an immediate task switch to the new owner.

Note A task can own more than one priority inheritance resource. When
claiming ownership of multiple resources, tasks competing for the same
resources must take care to avoid a deadlock caused by the order in which
the requests are made. Although the resources can be released in any
order, it is recommended that they be freed in the opposite order to which
they are reserved.

Note A task which owns a priority inheritance resource will have its task
execution priority automatically raised if any task of higher priority
requests ownership of the resource.

Restrictions A task which owns one or more priority inheritance resources must never
permit a lower priority task to execute until all of those resources have
been freed.

You must not attempt to reserve a counting or bounded semaphore. Use
cjsmwait for that purpose.

See Also cjrmfree, cjrmrls

AMX Procedures KADAK rev9 286.1

cjrmstatus cjrmstatus

Purpose Get Status of a Resource Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjrmstatus(CJ_ID resourceid,

struct cjxsmsts *statusp);

Description resourceid is the semaphore id of the resource semaphore of interest.

statusp is a pointer to storage for the resource semaphore status.
Structure cjxsmsts is defined in file CJZZZSD.H as follows:

struct cjxsmsts {
CJ_TYTAG xsmstag; /* Semaphore tag */
int xsmsvalue; /* Semaphore type = */

/* CJ_RMBASIC, CJ_RMINHERIT */
int xsmscount; /* Semaphore count */

/* 1 free */
/* 0 owned */
/* -n owned; n tasks waiting */

int xsmsnest; /* Resource nest level */
CJ_ID xsmsowner; /* Task id of resource owner */

/* if xsmscount <= 0 and */
/* xsmsnest > 0 */
/* CJ_IDNULL if resource free*/
/* Otherwise, unused */

};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the resource semaphore status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_ERSMID Invalid semaphore id

Note If the calling task is the resource owner, field xsmsowner will always be
valid. However, if the calling task is not the resource owner, the owner's
task id will only be valid if the resource is owned (xsmscount <= 0) and
the nesting count is postive (xsmsnest >= 0).

Note If field xsmsvalue >= 0, the semaphore referenced by resourceid is a
counting or bounded semaphore. See cjsmstatus for an interpretation of
the fields in structure cjxsmsts.

See Also cjsmstatus

286.2 rev9 KADAK AMX Procedures

This page left blank intentionally.

AMX Procedures KADAK rev9 287

cjsmbuild cjsmbuild

Purpose Build (Create) a Counting or Bounded Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjsmbuild(CJ_ID *smidp,

struct cjxsmdef *smdefp);

Description smidp is a pointer to storage for the semaphore id of the counting or
bounded semaphore allocated to the caller.

smdefp is a pointer to a counting or bounded semaphore definition.
Structure cjxsmdef is defined in file CJZZZSD.H as follows:

struct cjxsmdef {
CJ_TAGDEF xsmdtag; /* Semaphore tag */
int xsmdvalue; /* Initial semaphore value */
};

xsmdtag is a 4-character array for the semaphore name tag.

xsmdvalue is the semaphore value which must be specified using one of
the following macros defined in file CJZZZSD.H.

Use CJ_SMCOUNT(n) to create a counting semaphore with an initial
value of n where 0 <= n <= 16383 (0x3FFF) and an absolute upper
limit of 16383.

Use CJ_SMLIMIT(n) to create a bounded semaphore with an initial
value of 0 and an upper limit of n where 0 < n <= 16383.

Use CJ_SMBINARY to create a binary semaphore, a simple bounded
semaphore with an initial value of 0 and an upper limit of 1.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*smidp contains a valid semaphore id.

Errors returned:
For all errors, the semaphore id at *smidp is undefined on return.
CJ_ERSMVALUE Invalid semaphore value (see note on next page)
CJ_ERSMNONE No free semaphore

...more

288 rev9 KADAK AMX Procedures

Note You must use macro CJ_SMCOUNT(n), CJ_SMLIMIT(n) or CJ_SMBINARY to
create a counting or bounded semaphore. Your parameter n must be in the
range 0 to 16383 (0x3FFF).

The macros use your parameter n to encode an initial value v which
includes the semaphore type. Procedures cjsmbuild and cjsmcreate
will return error code CJ_ERSMVALUE if the initial value v < -2,
v = 0x4000 or v > 0x7FFF.

If v is CJ_RMBASIC (-1) or v is CJ_RMINHERIT (-2), a resource semaphore
will be created without an error being reported.

Example #include "CJZZZ.H"

static struct cjxsmdef semdefA = {
{"Sm-A"}, /* Counting semaphore tag */
CJ_SMBINARY /* Initial semaphore value */

/* for a binary semaphore */
};

CJ_ID CJ_CCPP makesemA(void) {
CJ_ID semid;

if (cjsmbuild(&semid, &semdefA) == CJ_EROK)
return(semid);

else return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP makesemB(void) {
struct cjxsmdef semdefB;
CJ_ID semid;

*(CJ_TYTAG *)&semdefB.xsmdtag = cjcftag("Sm-B");
/* Counting semaphore with */
/* an initial value of 3 */

semdefB.xsmdvalue = CJ_SMCOUNT(3);

if (cjsmbuild(&semid, &semdefB) == CJ_EROK)
return(semid);

else return(CJ_IDNULL); /* Error */
}

See Also cjsmcreate, cjsmdelete, cjksfind

AMX Procedures KADAK rev9 289

cjsmcreate cjsmcreate

Purpose Create a Counting or Bounded Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjsmcreate(CJ_ID *smidp, char *tag, int value);

Description smidp is a pointer to storage for the semaphore id of the counting or
bounded semaphore allocated to the caller.

tag is a pointer to a 4-character string for the semaphore name tag.

value is the semaphore value which must be specified using one of the
following macros defined in file CJZZZSD.H.

Use CJ_SMCOUNT(n) to create a counting semaphore with an initial
value of n where 0 <= n <= 16383 (0x3FFF) and an absolute upper
limit of 16383.

Use CJ_SMLIMIT(n) to create a bounded semaphore with an initial
value of 0 and an upper limit of n where 0 < n <= 16383.

Use CJ_SMBINARY to create a binary semaphore, a simple bounded
semaphore with an initial value of 0 and an upper limit of 1.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*smidp contains a valid semaphore id.

Errors returned:
For all errors, the semaphore id at *smidp is undefined on return.
CJ_ERSMVALUE Invalid semaphore value (see note on previous page)
CJ_ERSMNONE No free semaphore

Example #include "CJZZZ.H"

CJ_ID CJ_CCPP makesemC(void) {
CJ_ID semid;

/* Create a bounded semaphore with an upper limit of 5 */
if (cjsmcreate(&semid, "Sm-C", CJ_SMLIMIT(5)) == CJ_EROK)

return(semid);

else return(CJ_IDNULL);
}

See Also cjsmbuild, cjsmdelete, cjksfind

290 rev9 KADAK AMX Procedures

cjsmdelete cjsmdelete

Purpose Delete a Counting or Bounded Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjsmdelete(CJ_ID semid);

Description semid is the semaphore id of the counting or bounded semaphore to be
deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMBUSY Semaphore is busy

One or more tasks are waiting for the semaphore.

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the semaphore. Failure to observe this
restriction may lead to unexpected and unpredictable faults.

See Also cjsmbuild, cjsmcreate

AMX Procedures KADAK rev9 291

cjsmsignal cjsmsignal

Purpose Signal to a Counting or Bounded Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjsmsignal(CJ_ID semid);

Description semid is the semaphore id of the counting or bounded semaphore of
interest.

If a task is waiting for the semaphore, the semaphore is immediately
given to the task at the head of the semaphore wait queue. Otherwise,
the semaphore value is incremented by one.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMOVF Semaphore value overflow

A counting semaphore's value cannot exceed 16383.
A bounded semaphore's value cannnot exceed the
semaphore's upper limit.

CJ_ERNOENVLOP No message envelopes available

Task Switch If the semaphore is given to a task waiting for the semaphore, a task
switch may occur. If the caller is a task, a task switch will occur if the
waiting task is of higher priority than the caller. If the caller is an ISP, a
task switch will occur when the interrupt service is complete if the waiting
task is of higher priority than the interrupted task.

Restrictions You must not attempt to signal to a resource semaphore. Use cjrmrls or
cjrmfree for that purpose.

See Also cjsmwait

292 rev9 KADAK AMX Procedures

cjsmstatus cjsmstatus

Purpose Get Status of a Counting or Bounded Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjsmstatus(CJ_ID semid,

struct cjxsmsts *statusp);

Description semid is the semaphore id of the counting or bounded semaphore of
interest.

statusp is a pointer to storage for the counting or bounded semaphore
status. Structure cjxsmsts is defined in file CJZZZSD.H as follows:

struct cjxsmsts {
CJ_TYTAG xsmstag; /* Semaphore tag */
int xsmsvalue; /* Initial value >= 0 */

/* (see note below) */
int xsmscount; /* Semaphore count */

/* >0 available */
/* 0 not available */
/* -n not available */
/* n tasks waiting */

int xsmsnest; /* Always 0 */
CJ_ID xsmsowner; /* Always CJ_IDNULL */
};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the semaphore status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_ERSMID Invalid semaphore id

Note If field xsmsvalue < 0, the semaphore referenced by semid is a resource
semaphore. See cjrmstatus for an interpretation of the fields in structure
cjxsmsts.

If field xsmsvalue < 16384 (0x4000), the semaphore referenced by
semid is a counting semaphore with an initial count of xsmsvalue. If
field xsmsvalue > 16384 (0x4000), the semaphore is a bounded
semaphore with an upper limit of xsmsvalue & 0x3FFF.

See Also cjrmstatus

AMX Procedures KADAK rev9 293

cjsmwait cjsmwait

Purpose Wait on a Counting or Bounded Semaphore

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjsmwait(CJ_ID semid, int priority,

CJ_TIME timeout);

Description semid is the semaphore id of the counting or bounded semaphore of
interest.

priority is the priority at which the caller wishes to wait (0 = highest).
To wait in FIFO order, have all callers use the same value for
priority. This parameter is not used if timeout is < 0.

timeout > 0 is the maximum interval measured in system ticks which the
caller is prepared to wait for the semaphore. If timeout = 0, the caller
will wait forever for the semaphore. If timeout < 0, the caller will
not be allowed to wait for the semaphore.

If the semaphore value is > 0, the value is decremented by one and the
calling task is granted use of the semaphore. Otherwise, the calling task is
forced to wait for the semaphore (timeout >= 0) or is allowed to proceed
with a warning (timeout < 0).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful. The calling task can use the semaphore.

The semaphore value is decremented by one.

Warnings returned:
CJ_WRSMINUSE Semaphore not available
CJ_WRTMOUT Timed out before semaphore became available

Errors returned:
CJ_ERSMID Invalid semaphore id
CJ_ERSMUV Resource semaphore usage violation

Tasks which own any priority inheritance resources
cannot wait for a counting or bounded semaphore.

Task Switch If the task waits for the semaphore, there will be an immediate task switch
to the next lowest priority ready task.

Restrictions You must not attempt to wait for a resource semaphore. Use cjrmrsv for
that purpose.

See Also cjsmsignal

294 KADAK AMX Procedures

cjtdfmt cjtdfmt

Purpose Format Time and Date as an ASCII String

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
int CJ_CCPP cjtdfmt(struct cjxtd *tdbufp,

int format, char *ascii);

Description tdbufp is a pointer to a time/date structure containing the time and date which
is to be formatted. Structure cjxtd is defined in file CJZZZSD.H as follows:

struct cjxtd {
CJ_T8U xtdsec; /* Seconds (0-59) */
CJ_T8U xtdmin; /* Minutes (0-59) */
CJ_T8U xtdhr; /* Hours (0-23) */
CJ_T8U xtdday; /* Day (1-31) */
CJ_T8U xtdmonth; /* Month (1-12) */
CJ_T8U xtdyear; /* Year (0-99) */
CJ_T8U xtdow; /* Day of week */

/* (Mon=1 to Sun=7) */
CJ_T8U xtdcen; /* 0 if time/date incorrect */

/* Century if time/date */
/* is correct */

CJ_ID xtdid; /* Time/Date timer id */
};

format is the format specification value (see Chapter 5.5) consisting of a
combination of the following constants:
Pick one of: Default (format = 0):
CJ_TDFTIME Time only "23:59:59 Jan 31/93"

CJ_TDFDATE Date only If incorrect (xtdcen = 0), then
CJ_TDFT_D Time & date "23:59:59#Jan 31/93"

CJ_TDFD_T Date & time
Add one of: Add any or none of:
CJ_TDFmmmDY "Jan 31/93" CJ_TDFSSEC Suppress seconds
CJ_TDFMDY "01/31/93" CJ_TDFDOW Show day of week
CJ_TDFDmmmY "31 Jan/93" "Fri 31 Jan/93"

CJ_TDFDMY "31/01/93" CJ_TDFCENT Show century
CJ_TDFYMD "93/01/31" "31 Jan/1993"

ascii is a 26-byte character array into which the time and/or date will be
formatted as a null ('\0') terminated ASCII string.

Interrupts � Disabled � Enabled � Restored

Returns The number of characters stored in the ascii array, excluding the
terminating null ('\0').

See Also cjtdget

AMX Procedures KADAK 295

cjtdget cjtdget

Purpose Get the Current Time and Date

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtdget(struct cjxtd *tdbufp);

Description tdbufp is a pointer to storage for the current time and date. Structure
cjxtd is defined in file CJZZZSD.H as follows:

struct cjxtd {
CJ_T8U xtdsec; /* Seconds (0-59) */
CJ_T8U xtdmin; /* Minutes (0-59) */
CJ_T8U xtdhr; /* Hours (0-23) */
CJ_T8U xtdday; /* Day (1-31) */
CJ_T8U xtdmonth; /* Month (1-12) */
CJ_T8U xtdyear; /* Year (0-99) */
CJ_T8U xtdow; /* Day of week */

/* (Mon=1 to Sun=7) */
CJ_T8U xtdcen; /* 0 if time/date incorrect */

/* Century if time/date */
/* is correct */

CJ_ID xtdid; /* Time/Date timer id */
};

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

The current AMX time and date are stored in the structure at *tdbufp.

If field xtdcen = 0, the time and date stored at *tdbufp are valid but are
not considered to be the correct time of day or calendar date. Use
cjtdset to set the correct time and date.

See Also cjtdfmt, cjtdset

296 KADAK AMX Procedures

cjtdset cjtdset

Purpose Set the Current Time and Date

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtdset(struct cjxtd *tdbufp);

Description tdbufp is a pointer to a time/date structure containing the new time and
date. Structure cjxtd is defined in file CJZZZSD.H as follows:

struct cjxtd {
CJ_T8U xtdsec; /* Seconds (0-59) */
CJ_T8U xtdmin; /* Minutes (0-59) */
CJ_T8U xtdhr; /* Hours (0-23) */
CJ_T8U xtdday; /* Day (1-31) */
CJ_T8U xtdmonth; /* Month (1-12) */
CJ_T8U xtdyear; /* Year (0-99) */
CJ_T8U xtdow; /* Day of week */

/* (Mon=1 to Sun=7) */
CJ_T8U xtdcen; /* 0 if time/date incorrect */

/* Century if time/date */
/* is correct */

CJ_ID xtdid; /* Time/Date timer id */
};

If field xtdcen = 0, AMX will assume a century of 19. AMX will accept
the time and date at *tdbufp as valid but will not consider the value to be
the correct time of day or calendar date. Set field xtdcen to the correct
century (19, 20, ...) to set the correct time and date.

Fields xtdow and xtdid are not used by cjtdset. The correct day of the
week (1 to 7) is automatically computed by cjtdset from the calendar
date provided.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The AMX system time and date is set to that specified by the caller in
the structure at *tdbufp. The values for time and date supplied by the
caller are not checked for validity.

Errors returned:
CJ_ERTMID Invalid time/date timer id
CJ_ERTMVALUE Invalid time/date period
These errors indicate that private internal AMX parameters have
probably been corrupted.

See Also cjtdfmt, cjtdget

AMX Procedures KADAK 297

cjtkbuild cjtkbuild

Purpose Build (Create) a New Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkbuild(CJ_ID *tkidp,

struct cjxtkdef *tkdefp);

Description tkidp is a pointer to storage for the task id of the created task.

tkdefp is a pointer to a task definition. Structure cjxtkdef is defined in
file CJZZZSD.H as follows:

struct cjxtkdef {
CJ_TAGDEF xtkdtag; /* Task tag */
CJ_TASKPROC xtkdproc; /* A(task procedure) */
void *xtkdstore; /* A(bottom of task storage) */
unsigned int xtkdstsize; /* Size of task storage */

/* (bytes) */
unsigned int xtkdattr; /* Task attributes */
int xtkdpr; /* Task priority */
unsigned int xtkdslice; /* Task time slice */

/* (system ticks) */
};

xtkdtag is a 4-character array for the task name tag.

xtkdproc is a pointer to the task procedure to be executed whenever the
task is triggered by a call to cjtktrigger.

xtkdstore is a pointer to the bottom of a statically allocated region of
alterable memory (RAM) for use as the task's stack and Task Control
Block. The region must be properly aligned for use as a stack. The
alignment requirement is dictated by the target processor. For most
processors, long alignment is adequate.

xtkdstsize is the size, in bytes, of the task storage referenced by
xtkdstore. The size must be a multiple of 4.

xtkdattr is reserved to define task attributes. Set xtkdattr = 0.

xtkdpr is the priority at which the task is to execute. Xtkdpr must be in
the range 1 to 127 (1 = highest; 127 = lowest).

xtkdslice is the task's time slice interval measured in system ticks. Set
xtkdslice = 0 if the task is not to be time-sliced.

Interrupts � Disabled � Enabled � Restored

...more

298 KADAK AMX Procedures

Returns Error status is returned.
CJ_EROK Call successful
*tkidp contains a valid task id.

Errors returned:
For all errors, the task id at *tkidp is undefined on return.
CJ_ERTKNONE No free task
CJ_ERTKSTORE Insufficient storage provided for task stack and

Task Control Block
CJ_ERTKPR Invalid task priority (must be 1 to 127)

Restrictions Once you create a task, it cannot be deleted until the task's termination is
enabled using cjtkterm.

Example #include "CJZZZ.H"
/* Task Procedure A */

extern void CJ_CCPP taskAproc(void);

/* Task Procedure B */
extern void CJ_CCPP taskBproc(void);

/* Task A storage */
#define STOREA 1024
static long taskAram[STOREA/sizeof(long)];

/* Task B storage */
#define STOREB 2048
static long taskBram[STOREB/sizeof(long)];

static struct cjxtkdef taskdefA = {
{"Tk-A"}, /* Task A tag */
(CJ_TASKPROC)taskAproc, /* Task Procedure A */
taskAram, STOREA, /* Task A storage */
0, /* Task A attributes */
5, /* Task A priority */
0 /* Task A is not sliced */
};

...more

AMX Procedures KADAK 299

Example ...continued

CJ_ID CJ_CCPP maketaskA(void) {
CJ_ID taskid;

if (cjtkbuild(&taskid, &taskdefA) == CJ_EROK) {

/* Start task A */
if (cjtktrigger(taskid) == CJ_EROK)

return(taskid);

/* Serious fault; fatal error */
cjksfatal(CJ_FEBASE + 1, cjtkid());
}

return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP maketaskB(void) {
struct cjxtkdef taskdefB;
CJ_ID taskid;

*(CJ_TYTAG *)&taskdefB.xtkdtag = cjcftag("Tk-B");
taskdefB.xtkdproc = (CJ_TASKPROC)taskBproc;

/* Task B storage */
taskdefB.xtkdstore = taskBram;
taskdefB.xtkdstsize = STOREB;
taskdefB.xtkdattr = 0; /* Task B attributes */
taskdefB.xtkdpr = 10; /* Task B priority */

/* Task B slice = 100 ms */
taskdefB.xtkdslice = cjtmconvert(100);

if (cjtkbuild(&taskid, &taskdefB) == CJ_EROK) {

/* Start task B */
if (cjtktrigger(taskid) == CJ_EROK)

return(taskid);

/* Serious fault; fatal error */
cjksfatal(CJ_FEBASE + 2, cjtkid());
}

return(CJ_IDNULL); /* Error */
}

See Also cjtkcreate, cjtkdelete, cjtkmxinit, cjtkterm, cjksfind

300 KADAK AMX Procedures

cjtkcreate cjtkcreate

Purpose Create a New Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkcreate(CJ_ID *tkidp, char *tag,

CJ_TASKPROC proc,
void *store, unsigned int stsize,
unsigned int attr, int priority,
unsigned int slice);

Description tkidp is a pointer to storage for the task id of the created task.

tag is a pointer to a 4-character string for the task name tag.

proc is a pointer to the task procedure to be executed whenever the task is
triggered by a call to cjtktrigger.

store is a pointer to the bottom of a statically allocated region of alterable
memory (RAM) for use as the task's stack and Task Control Block.
The region must be properly aligned for use as a stack. The alignment
requirement is dictated by the target processor. For most processors,
long alignment is adequate.

stsize is the size, in bytes, of the task storage referenced by store. The
size must be a multiple of 4.

attr is reserved to define task attributes. Set attr = 0.

priority is the priority at which the task is to execute. Priority must
be in the range 1 to 127 (1 = highest; 127 = lowest).

slice is the task's time slice interval measured in system ticks. Set slice
= 0 if the task is not to be time-sliced.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*tkidp contains a valid task id.

...more

AMX Procedures KADAK 301

Returns ...continued

Errors returned:
For all errors, the task id at *tkidp is undefined on return.
CJ_ERTKNONE No free task
CJ_ERTKSTORE Insufficient storage provided for task stack and

Task Control Block
CJ_ERTKPR Invalid task priority (must be 1 to 127)

Restrictions Once you create a task, it cannot be deleted until the task's termination is
enabled using cjtkterm.

Example #include "CJZZZ.H"
/* Task Procedure C */

extern void CJ_CCPP taskCproc(void);

/* Task C storage */
#define STOREC 640
static long taskCram[STOREC/sizeof(long)];

CJ_ID CJ_CCPP maketaskC(void) {
CJ_ID taskid;

if (cjtkcreate(&taskid,
"Tk-C",
(CJ_TASKPROC)taskCproc,

/* Task C storage */
taskCram, STOREC,
0, /* Task C attributes */
10, /* Task C priority */

/* Task C slice = 200 ms */
cjtmconvert(200)
) == CJ_EROK) {

/* Start task C */
if (cjtktrigger(taskid) == CJ_EROK)

return(taskid);

/* Serious fault; fatal error */
cjksfatal(CJ_FEBASE + 3, cjtkid());
}

return(CJ_IDNULL); /* Error */
}

See Also cjtkbuild, cjtkdelete, cjtkmxinit, cjtkterm, cjksfind

302 rev9 KADAK AMX Procedures

cjtkdelay cjtkdelay

Purpose Delay for an Interval

Cjtkdelay is similar to cjtkwaitm but with the error status codes
reversed. For a delay, timeout is expected and a cjtkwake request
generates a warning. For a timed wait, a timeout generates a warning and
a cjtkwake request is considered normal.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkdelay(CJ_TIME interval);

Description interval is the required delay interval measured in system ticks.
Interval must be >= 0. If interval = 0, the calling task will wait
forever or until a cjtkwake call wakes the task.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
Task was delayed for interval system ticks.

Warnings returned:
CJ_WRTKDELAY Task wakened by cjtkwake before delay

completed

Errors returned:
CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

Note If the task has an outstanding cjtkwake wake request pending when it
calls cjtkdelay, the task will continue execution immediately with an
error status of CJ_WRTKDELAY without any delay.

If there is any possibility that some task, ISP or Timer Procedure has
already issued a cjtkwake call to wake the task, the task should call
cjtkwaitclr to reset the pending wake request prior to calling
cjtkdelay.

Task Switch If the task is allowed to delay, there will be an immediate task switch to
the next lowest priority ready task.

See Also cjtkwait, cjtkwaitclr, cjtkwaitm, cjtkwake

AMX Procedures KADAK 303

cjtkdelete cjtkdelete

Purpose Delete a Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkdelete(CJ_ID taskid, int priority);

Description taskid is the task id of the task to be deleted. A task can delete itself.

priority is the task execution priority at which the deletion is to occur.
Priority must be in the range 1 to 127 (1 = highest; 127 = lowest).

The deletion priority must be lower than the priority of any task which
can affect the task being deleted. The deletion priority must be higher
than the priority of any permanently active compute bound task.

AMX forces the task which is to be deleted to begin (or resume)
execution. AMX then changes the task's priority to the deletion priority,
calls the task's Task Termination Procedure and frees the task's stack and
TCB for reuse.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKPR Invalid task priority (must be 1 to 127)
CJ_ERTKABORT Task cannot be deleted until a call to cjtkterm

provides a Task Termination Procedure

Note If the task which is being deleted has an unacknowledged message in its
possession, AMX will automatically call cjtkmsgack to acknowledge the
message and return an answer-back status of CJ_EROK to the task which is
waiting for the acknowledgement.

...more

304 KADAK AMX Procedures

Task Switch An immediate task switch will occur. AMX invokes the Kernel Task to
initiate deletion of the task and then resumes execution of the highest
priority ready task.

Restrictions A task cannot be deleted until the task's termination is enabled using
cjtkterm.

You must not use cjtkdelete to delete a message exchange task. Use
cjtkxdelete for that purpose.

You must not delete a task which is waiting, or is about to wait, for any
AMX resource such as a buffer from a buffer pool, a resource or counting
semaphore, events in an event group or a message from a mailbox or
message exchange. Failure to observe this restriction may lead to
unexpected and unpredictable faults.

Example The following example illustrates the steps needed to delete a task and
recover the memory used by that task for stack and TCB. You must
follow these steps to assure that the task being deleted has truly
disappeared before you reuse its stack for some other purpose.

In this example it is assumed that the task which is doing the deletion will
find the deleted task's stack by referencing the task definition which was
used to create that task (see the example for cjtkbuild).

...more

AMX Procedures KADAK 305

Example ...continued

#include "CJZZZ.H"

CJ_ERRST CJ_CCPP deltask(
CJ_ID taskid, /* Task id of task to delete */
int deletepr) /* Deletion priority */
{
struct cjxtksts taskinfo;
CJ_ERRST status;
int taskpr;
CJ_ID curtask;

/* Get task's status */
if ((status = cjtkstatus(taskid, &taskinfo)) != CJ_EROK)

return(status); /* Error */

taskpr = taskinfo.xtkspr; /* Save task's priority */

/* Delete the task */
if ((status = cjtkdelete(taskid, deletepr)) != CJ_EROK)

return(status); /* Error */

curtask = cjtkid(); /* Get current task status */
if ((status = cjtkstatus(curtask, &taskinfo)) != CJ_EROK)

return(status); /* Error */

if (deletepr > taskpr) /* Pick lowest priority */
taskpr = deletepr;

if (taskinfo.xtkspr <= taskpr) {
/* Temporarily drop current task priority */
/* below the task being deleted to allow the */
/* task deletion to complete */
cjtkpriority(curtask, taskpr + 1);
cjtkpriority(curtask, taskinfo.xtkspr);
}

return (CJ_EROK);
}

See Also cjtkbuild, cjtkcreate, cjtkterm, cjtkxdelete

306 KADAK AMX Procedures

cjtkend cjtkend

Purpose End Execution of the Current Task

A task normally ends when its task procedure returns to AMX. However,
under some circumstances, often related to error conditions, a task may
wish to end but, because of procedure nesting, cannot easily do so. In
such cases the task can call cjtkend to force an immediate end to the task.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjtkend(void);

Description The calling task is immediately forced to end execution.

Interrupts � Disabled � Enabled � Restored

Returns There is no return from cjtkend.

If the task which is ending has an unacknowledged message in its
possession, AMX will automatically call cjtkmsgack to acknowledge the
message and return an answer-back status of CJ_EROK to the task which is
waiting for the acknowledgement.

If the task has an outstanding trigger request pending, AMX will
immediately call the task procedure again with the task's stack reset for
reuse. Otherwise, AMX declares the task idle waiting for a trigger
request.

Task Switch If the task becomes idle, there will be an immediate task switch to the next
lowest priority ready task.

See Also cjtktrigger, cjtkmsgack

AMX Procedures KADAK rev8 307

cjtkid cjtkid

Purpose Get the Task Id of the Current Task

Reentrant procedures which are shared by several tasks can use cjtkid to
get the task id of the task which is executing the procedure thereby
eliminating the need to pass the caller's task id as a parameter to the
procedure.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ID CJ_CCPP cjtkid(void);

Description AMX assures that the highest priority task which is capable of execution
has the use of the processor. That task is called the current task. A task
which is idle or waiting for something to occur cannot be the current task.

Interrupts � Disabled � Enabled � Restored

Returns When called from a task or an Exit Procedure, the task id of the currently
executing task is returned to the caller.

When called from an ISP, the value CJ_IDNULL is returned to the caller.

See Also cjtktcb

308 KADAK AMX Procedures

cjtkkill cjtkkill

Purpose Kill (Flush) a Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkkill(CJ_ID taskid);

Description taskid is the task id of the task to be killed. A task can kill itself.

AMX forces the task which is to be killed to begin (or resume) execution.
AMX then resets the task's trigger count to zero, calls the task's Task
Termination Procedure and ends the task.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKABORT Task cannot be killed until a call to cjtkterm

provides a Task Termination Procedure

Note If the task which is being killed has an unacknowledged message in its
possession, AMX will automatically call cjtkmsgack to acknowledge the
message and return an answer-back status of CJ_EROK to the task which is
waiting for the acknowledgement.

Task Switch An immediate task switch will occur. AMX invokes the Kernel Task to
initiate the task kill and then resumes execution of the highest priority
ready task.

Restrictions A task cannot be killed until the task's termination is enabled using
cjtkterm.

You must not use cjtkkill to kill a message exchange task. Use
cjtkxkill for that purpose.

You must not kill a task which is waiting, or is about to wait, for any
AMX resource such as a buffer from a buffer pool, a resource or counting
semaphore, events in an event group or a message from a mailbox or
message exchange. Failure to observe this restriction may lead to
unexpected and unpredictable faults.

See Also cjtkterm, cjtkxkill

AMX Procedures KADAK 309

cjtkmsgack cjtkmsgack

Purpose Acknowledge Receipt of a Message

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkmsgack(int ackback);

Description ackback is the answer-back status to be returned to the task which sent the
message which the calling task is currently processing. Ackback must
be >= 0.

It is recommended that you use status values of CJ_AKBASE + n where
n >= 0 to distinguish your codes from AMX warning codes.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Warnings returned:
CJ_WRAKNOTASK The message currently being processed did not

come from another task
CJ_WRAKNOWAIT No task is waiting for an answer-back to the

message currently being processed
CJ_WRTKWAKEN Task not waiting yet and acknowledge already

posted (Private AMX data has probably been
corrupted causing this warning)

Errors returned:
CJ_ERAKVALUE Answer-back status must be >= 0

Task Switch If the task waiting for the message acknowledgement is of higher priority
than the calling task, an immediate task switch to that task will occur.

See Also cjmbsend, cjmxsend, cjtkend

310 KADAK AMX Procedures

cjtkmxid cjtkmxid

Purpose Get a Task's Message Exchange Id

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ID CJ_CCPP cjtkmxid(CJ_ID taskid);

Description taskid is the task id of the message exchange task of interest.

Interrupts � Disabled � Enabled � Restored

Returns If taskid is not a valid task id, a message exchange id of CJ_IDNULL is
returned.

If the task identified by taskid is a message exchange task (see
cjtkmxinit), the task's message exchange id is returned.

Otherwise a message exchange id of CJ_IDNULL is returned.

Example #include "CJZZZ.H"

CJ_ERRST CJ_CCPP sendMXtask(CJ_ID taskid, void *msgp) {
CJ_ID mxid;

/* Find task's message exchange id */
if ((mxid = cjtkmxid(taskid)) == CJ_IDNULL)

return(CJ_ERTKID); /* No message exchange */

/* Send message to the message exchange task */
/* Send at priority 1; do not wait for ACK */
return (cjmxsend(mxid, msgp, CJ_NO, 1));
}

See Also cjtkmxinit

AMX Procedures KADAK 311

cjtkmxinit cjtkmxinit

Purpose Initialize and Start a Message Exchange Task

To use this procedure, you must first create a message exchange. Then
create a task with a task procedure which expects to receive an AMX
message. Finally, call cjtkmxinit to attach the message exchange to the
task and automatically start the task such that it is waiting for a message to
arrive at the message exchange. Whenever a message arrives, the task
procedure will be called with a copy of the message on its stack ready to
be processed.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkmxinit(CJ_ID taskid, CJ_ID mxid);

Description taskid is the task id of the task to which the message exchange is to be
attached. The task must be idle.

mxid is the message exchange id of the message exchange to be attached
to the specified task.

A message exchange task can be created using cjtkbuild or cjtkcreate.
The task must be created with the task attribute CJ_MATAMSG indicating
that the task will receive an AMX message on its stack.

By default, each AMX message arriving on the task's message exchange is
passed to the task procedure by value. Such a task is prototyped as
follows:

void CJ_CCPP msgxtask(struct cjxmsg message);

Alternatively, the AMX messages can be passed to the message exchange
task procedure by reference provided the task is created with the
additional task attribute CJ_MATAPBR. Such a task is prototyped as
follows:

void CJ_CCPP msgxtask(struct cjxmsg *msgp);

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERMXID Invalid message exchange id

...more

312 KADAK AMX Procedures

Example #include "CJZZZ.H"
/* Task Procedure */

extern void CJ_CCPP taskproc(struct cjxmsg *msgp);

/* Task storage */
#define STORE 1024
static long taskram[STORE/sizeof(long)];

CJ_ID CJ_CCPP makeMXtask(void) {
CJ_ID taskid;
CJ_ID mxid;

/* Create a message exchange for the task */
if (cjmxcreate(&mxid, "T-MX", 10, 10, 0, 0) != CJ_EROK)

return(CJ_IDNULL); /* Error */

if (cjtkcreate(&taskid,
"T-MX",
(CJ_TASKPROC)taskproc,

/* Task storage */
taskram, STORE,

/* Task attributes */
CJ_MATAMSG + CJ_MATAPBR,
10, /* Task priority */
0 /* Task not sliced */
) == CJ_EROK) {

/* Start the message exchange task */
if (cjtkmxinit(taskid, mxid) == CJ_EROK)

return(mxid);

/* Serious fault; fatal error */
cjksfatal(CJ_FEBASE + 4, cjtkid());
}

return(CJ_IDNULL); /* Error */
}

See Also cjmxcreate, cjtkcreate, cjtkmxid, cjtkxdelete, cjtkxkill

AMX Procedures KADAK rev9 312.1

cjtkpradjust cjtkpradjust

Purpose Sense and/or Adjust a Task's Execution Priority

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkpradjust(CJ_ID taskid, int *prp);

Description taskid is the task id of the task whose priority is to be sensed or changed.
A task can sense or change its own priority.

prp is a pointer to storage for the task's priority. On entry, *prp must be
set to specify the required action.

*prp = -1 Fetch the task's true priority.
*prp = 0 Fetch the task's base priority.
*prp = n > 0 Fetch the task's base priority and then change the

task's base priority to n. Value n must be in the
range 1 to 127 (1 = highest; 127 = lowest).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*prp is the task's true priority or base priority per the caller's request.
The base priority is the task's normal execution priority, 1 to 127.
The true priority is (p << 8) + r where p is the priority at which the
task is actually executing and r is the task's relative priority, from
0 (highest) to 255 (lowest), with respect to all other tasks currently
executing at that same priority level p.

Errors returned:
*prp is undefined.
CJ_ERTKID Invalid task id
CJ_ERTKPR Invalid task priority (*prp must be -1 to 127)

Note A task normally runs at its base priority, 1 to 127. If a task owns a priority
inheritance resource, its true execution priority will be higher than its base
priority if AMX has to raise the task priority to avoid a priority inversion.

Task Switch If the task whose priority was changed is ready to run and its new priority
is higher than that of the calling task, an immediate task switch to that task
will occur.

Restrictions Do not alter the priority of a task which uses priority inheritance resources
unless you are certain that the task is not using those resources at the time
that you alter the task's priority.

See Also cjtkcreate, cjtkdelete, cjtkpriority, cjtkstatus

312.2 rev9 KADAK AMX Procedures

This page left blank intentionally.

AMX Procedures KADAK rev9 313

cjtkpriority cjtkpriority

Purpose Change a Task's Execution Priority

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkpriority(CJ_ID taskid, int priority);

Description taskid is the task id of the task whose priority is to be changed. A task
can change its own priority.

priority is the desired execution priority of the task. Priority must be
in the range 1 to 127 (1 = highest; 127 = lowest).

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKPR Invalid task priority (must be 1 to 127; see note)

Note Do not use priority 0. Although its use is not prohibited, priority 0 is
considered an invalid task priority. Priority 0 is reserved for use by AMX.

You can use procedure cjtkpradjust to sense a task's priority without
having to call cjtkstatus for the task's complete status.

Task Switch If the task whose priority was changed is ready to run and its new priority
is higher than that of the calling task, an immediate task switch to that task
will occur.

Restrictions Do not alter the priority of a task which uses priority inheritance resources
unless you are certain that the task is not using those resources at the time
that you alter the task's priority.

Example See the example provided with cjtkdelete for one of the few valid uses
for this procedure.

See Also cjtkcreate, cjtkdelete, cjtkpradjust

314 KADAK AMX Procedures

cjtkresume cjtkresume

Purpose Resume a Suspended Task

Resume a task known to be suspended as a result of a cjtksuspend call.

There should rarely be a need to call this procedure in a well designed
system. Cjtksuspend and cjtkresume are provided primarily to simplify
the porting of designs from other operating systems to AMX.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkresume(CJ_ID taskid);

Description taskid is the task id of the task whose suspension is to lifted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id

Note A task may remain blocked, unable to execute, even though the
suspension has been removed. For example, assume that a task which was
waiting for a semaphore was subsequently suspended by a cjtksuspend
call. When the suspension is lifted with a cjtkresume call, the task will
remain blocked waiting for the semaphore if the semaphore has not yet
been granted to the task.

Task Switch If the task whose suspension has been lifted is ready to run, a task switch
may occur. If the caller is a task, a task switch will occur if the resumed
task is of higher priority than the caller. If the caller is an ISP, a task
switch will occur when the interrupt service is complete if the resumed
task is of higher priority than the interrupted task.

See Also cjtksuspend

AMX Procedures KADAK 315

cjtkstatus cjtkstatus

Purpose Get Status of a Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkstatus(CJ_ID taskid,

struct cjxtksts *statusp);

Description taskid is the task id of the task of interest.

statusp is a pointer to storage for the task status. Structure cjxtksts is
defined in file CJZZZSD.H as follows:

struct cjxtksts {
CJ_TYTAG xtkstag; /* Task tag */
CJ_T32U xtkssts; /* Task status */
CJ_TIME xtkstmr; /* Task timer */
CJ_TYSLICE xtksslice; /* Time slice */
int xtkspr; /* Task priority */
unsigned int xtksattr; /* Task attributes */
int xtkscalls; /* Trigger count */
CJ_ID xtksmstid; /* Message sender task's id */
CJ_ID xtksmxid; /* Task message exchange id */
};

xtkstag is a 4-character array containing the task name tag.

xtkstmr is the number of system ticks remaining in the task's timeout or
delay timer. Xtkstmr = 0 if the task is not in the timed wait state.

xtksslice is the task's time slice interval measured in system ticks.
Xtksslice = 0 if the task is not time-sliced.

xtkspr is the priority at which the task executes.

xtkscalls is task's current trigger count. If xtkscalls is not 0, then the
task has xtkscalls pending requests to execute.

xtksmstid is the task id of the task, if any, which sent the AMX message
which the task is currently processing. If the task has not retrieved a
message from a mailbox or message exchange or if such a message
came from an ISP, xtksmstid will be CJ_IDNULL.

xtksmxid is the task's message exchange id. If the task is not a message
exchange task, xtksmxid will be CJ_IDNULL.

...more

316 KADAK AMX Procedures

Description ...continued

xtkssts defines the task state. The task status bits are defined in file
CJZZZSD.H as follows:

CJ_MATSWTR Trigger wait (task is idle)
CJ_MATSWSUS Suspended (waiting for resume)
CJ_MATSWAIT Waiting (see reasons below)
CJ_MATSWHLT Halted

Wait reasons (used with CJ_MATSWAIT)
CJ_MATSWSM Semaphore wait
CJ_MATSWEV Event group wait
CJ_MATSWMB Mailbox wait
CJ_MATSWMX Message exchange wait
CJ_MATSWBUF Buffer wait
CJ_MATSWTM Timer wait (may be used with others)

Extended wait reasons
CJ_MATSWMBAK Mailbox ACK wait
CJ_MATSWMXAK Message exchange ACK wait

xtksattr defines the task attributes. The task attribute bits are defined in
file CJZZZSD.H as follows:

CJ_MATAHLT Task cannot be halted
CJ_MATAMSG Message exchange task
CJ_MATAPBR Task receives message by reference
CJ_MATAMSW Message sender task is waiting for ACK

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
The structure at *statusp contains the task status.

Errors returned:
For all errors, the structure at *statusp is undefined on return.
CJ_ERTKID Invalid task id

AMX Procedures KADAK 317

cjtkstop cjtkstop

Purpose Stop (End) Execution of Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkstop(CJ_ID taskid);

Description taskid is the task id of the task to be stopped. A task can stop itself.

AMX forces the task which is to be stopped to begin (or resume)
execution. AMX then calls the task's Task Termination Procedure and
ends the task.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKABORT Task cannot be stopped until a call to cjtkterm

provides a Task Termination Procedure

Note If the task which is being stopped has an unacknowledged message in its
possession, AMX will automatically call cjtkmsgack to acknowledge the
message and return an answer-back status of CJ_EROK to the task which is
waiting for the acknowledgement.

Task Switch An immediate task switch will occur. AMX invokes the Kernel Task to
initiate the task stop and then resumes execution of the highest priority
ready task.

Restrictions A task cannot be stopped until the task's termination is enabled using
cjtkterm.

You must not stop a task which is waiting, or is about to wait, for any
AMX resource such as a buffer from a buffer pool, a resource or counting
semaphore, events in an event group or a message from a mailbox or
message exchange. Failure to observe this restriction may lead to
unexpected and unpredictable faults.

See Also cjtkterm

318 rev9 KADAK AMX Procedures

cjtksuspend cjtksuspend

Purpose Suspend a Task

There should rarely be a need to call this procedure in a well designed
system. Cjtksuspend and cjtkresume are provided primarily to simplify
the porting of designs from other operating systems to AMX.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtksuspend(CJ_ID taskid);

Description taskid is the task id of the task to be suspended. A task can suspend
itself.

The task will be unconditionally suspended until some other task, ISP or
Timer Procedure lifts the suspension with a matching cjtkresume call.

Interrupts � Disabled � Enabled � Restored

If a task suspends itself, interrupts will be disabled briefly. Upon return,
interrupts will be enabled, even if they were disabled upon entry.

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id

Note A task suspension overrides all other wait conditions. For example,
assume that a task which was waiting for a semaphore was subsequently
suspended by a cjtksuspend call. If the semaphore is granted to the task
before the suspension is lifted, the task will remain suspended with the
semaphore in its possession waiting for a cjtkresume call.

Task Switch If a task suspends itself, there will be an immediate task switch to the next
lowest priority ready task.

Restrictions You must not suspend the AMX Kernel Task.

Do not suspend a task which uses priority inheritance resources unless you
are certain that the task is not using those resources at the time that you
suspend the task.

See Also cjtkresume

AMX Procedures KADAK 319

cjtktcb cjtktcb

Purpose Find a Task's Task Control Block

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtktcb(CJ_ID taskid,

struct cjxtcbs **tcbpp);

Description taskid is the task id of the task of interest.

tcbpp is a pointer to storage for a pointer to the Task Control Block
(TCB) of the specified task. Structure cjxtcbs is defined in file
CJZZZSD.H as follows:

struct cjxtcbs {
CJ_T32U xtcbrsv[CJ_MINTCB]; /* Private */
CJ_T32U xtcbuser[4]; /* User defined */
};

xtcbrsv is private to AMX. Do not reference this array.

xtcbuser is an array of four 32-bit unsigned integers reserved for use by
your application.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*tcbpp contains a valid TCB pointer.

Errors returned:
For all errors, the TCB pointer at *tcbpp is undefined on return.
CJ_ERTKID Invalid task id

Restrictions Do not use the Task Control Block pointer provided by this procedure if
there is any chance that the corresponding task could be deleted while the
TCB pointer is in your possession.

Do not make any assumptions about the size of the TCB. The TCB may
actually be larger than indicated by the size of structure cjxtcbs.

See Also cjtkid

320 KADAK AMX Procedures

cjtkterm cjtkterm

Purpose Enable/Disable Termination of a Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkterm(CJ_ID taskid, CJ_TERMPROC ttproc);

Description taskid is the task id of the task whose Task Termination Procedure is to
be set.

ttproc is a pointer to the Task Termination Procedure which is to be
executed by the task whenever the task is stopped, killed or deleted.

ttproc is prototyped as follows:
void CJ_CCPP termfn(CJ_ID taskid, int reason);
taskid is the task id of the task being terminated.
reason is one of the following task termination reasons:

CJ_KCCFSTOP Task is being stopped
CJ_KCCFKILL Task is being killed
CJ_KCCFDEL Task is being deleted

For portability using different C compilers, cast your procedure pointer
as (CJ_TERMPROC)termfn in your call to cjtkterm.

If ttproc = CJ_NULLFN, termination of the task will be inhibited until a
valid Task Termination Procedure is set with cjtkterm.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKTERM Task termination is in progress

...more

AMX Procedures KADAK 321

Example #include "CJZZZ.H"

/* Make and start periodic timer B (see cjtmbuild example)*/
extern CJ_ID CJ_CCPP maketimerB(void);

/* Make and trigger task C (see cjtkcreate example) */
extern CJ_ID CJ_CCPP maketaskC(void);

/* Forward reference to Task C Termination Procedure */
void CJ_CCPP taskCterm(CJ_ID taskid, int reason);

static CJ_ID taskCid; /* Task C id */

/* Task C Restart Procedure */
void CJ_CCPP taskCrr(void) {

/* Make task C and trigger it */
/* If task created, allow it to be terminated */
if ((taskCid = maketaskC()) != CJ_IDNULL)

cjtkterm(taskCid, (CJ_TERMPROC)taskCterm);

/* Make periodic timer B and start it */
maketimerB();
}

/* Task C goes compute bound until timer B deletes it */
void CJ_CCPP taskCproc(void) {

for (;;) ;
}

/* Task C Termination Procedure */
/* If task being deleted, taskCid is no longer valid */
void CJ_CCPP taskCterm(CJ_ID taskid, int reason) {

if (reason == CJ_KCCFDEL)
taskCid = CJ_IDNULL;

}

/* Periodic timer B */
/* If task C id is valid, delete task C and stop timer B */
void CJ_CCPP timerBproc(CJ_ID timerid, void *unused) {

if (taskCid != CJ_IDNULL) {
cjtkdelete(taskCid, 10);
cjtmwrite(timerid, 0);
}

}

See Also cjtkdelete, cjtkkill, cjtkstop, cjtkxdelete, cjtkxkill

322 KADAK AMX Procedures

cjtktrigger cjtktrigger

Purpose Trigger (Start) a Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtktrigger(CJ_ID taskid);

Description taskid is the task id of the task to be triggered.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id

Note AMX starts a task by calling the task procedure identified when the task
was created. The task is considered active until the task procedure ends by
returning to AMX or by calling cjtkend.

The task procedure is called by AMX once for each trigger which the task
has received. If the task is active when the task is triggered, AMX
increments the task's trigger count. When the task ends, AMX checks the
task's trigger count and, if it is non zero, decrements the trigger count and
calls the task procedure again.

Task Switch If the task trigger is successful, a task switch may occur if the triggered
task was idle prior to the trigger. If the caller is a task, a task switch will
occur if the triggered task is of higher priority than the caller. If the caller
is an ISP, a task switch will occur when the interrupt service is complete if
the triggered task is of higher priority than the interrupted task.

See Also cjtkend

AMX Procedures KADAK rev9 323

cjtkwait cjtkwait

Purpose Wait Unconditionally for a Wake Request

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkwait(void);

Description The calling task will be suspended until some other task, ISP or Timer
Procedure issues a cjtkwake call to wake this task.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
Task was wakened by cjtkwake.

Errors returned:
CJ_ERSMUV Resource semaphore usage violation (see note)

Note If the task has an outstanding cjtkwake wake request pending when it
calls cjtkwait, the task will continue execution immediately with status
of CJ_EROK.

If there is any possibility that some task, ISP or Timer Procedure has
already issued a cjtkwake call to wake the task, the task should call
cjtkwaitclr to reset the pending wake request prior to calling cjtkwait.

Note A task which owns one or more priority inheritance resources cannot
suspend itself for any reason. The task must remain compute bound,
executing until it has released all such resources. Then, and only then, can
the task wait for some event of interest. Any task which attempts to wait
for any reason while owning a priority inheritance resource will resume
with error status CJ_ERSMUV without waiting.

Task Switch If the task is allowed to wait, there will be an immediate task switch to the
next lowest priority ready task.

...more

324 KADAK AMX Procedures

Example The following example is paired with the example for cjtkwake.

#include "CJZZZ.H"

extern void deviceon(void);
extern void deviceoff(void);

static CJ_ID taskflag;

void CJ_CCPP devicetask(void) {

cjtkwaitclr(); /* Reset pending wakes */
taskflag = cjtkid(); /* Identify current task */
deviceon(); /* Enable device interrupts */

for (;;) {
cjtkwait(); /* Wait for device */

if (taskflag == CJ_IDNULL)
break; /* Device overrun in ISP */

/* Device interrupt detected */
/* Service as necessary */

} /* End of for loop */

cjtkwaitclr(); /* Reset pending wakes after */
/* ISP overrun */

}

See Also cjtkdelay, cjtkwaitm, cjtkwaitclr, cjtkwake

AMX Procedures KADAK 325

cjtkwaitclr cjtkwaitclr

Purpose Reset Pending Wake Requests

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjtkwaitclr(void);

Description Use cjtkwaitclr to reset any pending wakes prior to a call to
cjtkdelay, cjtkwait or cjtkwaitm. The pending wakes, if any, usually
occur because of errors or race conditions involving calls to cjtkwake.

For example, assume that a task calls cjtkwaitm to wait for up to 500 ms
for an event which will be signalled by a cjtkwake call from an ISP. If
the interrupt occurs just after the task times out but before the task can
take any corrective action, the ISP will issue a cjtkwake call which will
produce a pending wake request because the task is no longer waiting.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

Restrictions This procedure can only be called by the currently executing task.

See Also cjtkdelay, cjtkwait, cjtkwaitm, cjtkwake

326 rev9 KADAK AMX Procedures

cjtkwaitm cjtkwaitm

Purpose Timed Wait for a Wake Request

Cjtkwaitm is similar to cjtkdelay but with the error status codes
reversed. For a timed wait, a timeout generates a warning and a cjtkwake
request is considered normal. For a delay, timeout is expected and a
cjtkwake request generates a warning.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkwaitm(CJ_TIME timeout);

Description timeout is the maximum interval measured in system ticks which the
caller is prepared to wait for a cjtkwake wake request. Timeout must
be >= 0. If timeout = 0, the calling task will wait forever or until a
cjtkwake call wakes the task.

The calling task will be suspended until some other task, ISP or Timer
Procedure issues a cjtkwake call to wake this task or until the specified
time interval expires.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
Task was wakened by cjtkwake before timeout system ticks elapsed.

Warnings returned:
CJ_WRTMOUT Task timed out with no cjtkwake request

Errors returned:
CJ_ERSMUV Resource semaphore usage violation (see cjtkwait)

Note If the task has an outstanding cjtkwake wake request pending when it
calls cjtkwaitm, the task will continue execution immediately with status
of CJ_EROK.

If there is any possibility that some task, ISP or Timer Procedure has
already issued a cjtkwake call to wake the task, the task should call
cjtkwaitclr to reset the pending wake request prior to calling
cjtkwaitm.

Task Switch If the task is allowed to wait, there will be an immediate task switch to the
next lowest priority ready task.

...more

AMX Procedures KADAK 327

Example The following example is paired with the example for cjtkwake.

#include "CJZZZ.H"

extern void deviceon(void);
extern void deviceoff(void);

static CJ_ID taskflag;

void CJ_CCPP devicetask(void) {
CJ_ERRST status;
CJ_TIME timeout;

/* Timeout = 500 ms */
timeout = cjtmconvert(500);
cjtkwaitclr(); /* Reset pending wakes */
taskflag = cjtkid(); /* Identify current task */
deviceon(); /* Enable device interrupts */

for (;;) {
/* Wait for device */

status = cjtkwaitm(timeout);

if (status == CJ_WRTMOUT) {
/* Disable device interrupts */

deviceoff();
break;
}

if (taskflag == CJ_IDNULL)
break; /* Device overrun in ISP */

/* Device interrupt detected */
/* Service as necessary */

} /* End of for loop */

cjtkwaitclr(); /* Reset pending wakes after */
/* ISP overrun or timeout */

}

See Also cjtkdelay, cjtkwait, cjtkwaitclr, cjtkwake

328 KADAK AMX Procedures

cjtkwake cjtkwake

Purpose Wake a Waiting Task

Wake a task known to be waiting because of a cjtkwait or cjtkwaitm or
call.

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkwake(CJ_ID taskid);

Description taskid is the task id of the task waiting for a wake request.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Warnings returned:
CJ_WRTKWAKEP Task not waiting; wake now pending
CJ_WRTKWAKEN Task not waiting; wake already pending

Errors returned:
CJ_ERTKID Invalid task id

Task Switch If the task wake is successful, a task switch may occur. If the caller is a
task, a task switch will occur if the waiting task is of higher priority than
the caller. If the caller is an ISP, a task switch will occur when the
interrupt service is complete if the waiting task is of higher priority than
the interrupted task.

...more

AMX Procedures KADAK 329

Example The following example is paired with the examples for cjtkwait and
cjtkwaitm.

#include "CJZZZ.H"

extern void deviceon(void);
extern void deviceoff(void);

extern CJ_ID taskflag;

void CJ_CCPP deviceint(void) {
CJ_ERRST status;

/* Device interrupt occurred */
/* Dismiss interrupt and service as necessary */

if (taskflag != CJ_IDNULL) {
/* Wake the task */

status = cjtkwake(taskflag);

if ((status == CJ_EROK) ||
(status == CJ_WRTKWAKEP))

return; /* All OK */
}

/* Device overrun detected: */
/* 1. No task available to service device */
/* or 2. Task already had a pending wake request */

taskflag = CJ_IDNULL; /* Tell task ISP overran */
deviceoff(); /* Disable device interrupts */
}

See Also cjtkdelay, cjtkwait, cjtkwaitm

330 KADAK AMX Procedures

cjtkxdelete cjtkxdelete

Purpose Delete a Message Exchange Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkxdelete(CJ_ID taskid, int priority);

Description taskid is the task id of the message exchange task to be deleted. A
message exchange task can delete itself.

priority is the task execution priority at which the deletion is to occur.
Priority must be in the range 1 to 127 (1 = highest; 127 = lowest).

The deletion priority must be lower than the priority of any task which
can affect the task being deleted. The deletion priority must be higher
than the priority of any permanently active compute bound task.

AMX forces the task which is to be deleted to begin (or resume)
execution. AMX then changes the task's priority to the deletion priority,
flushes all messages from the task's message exchange and deletes the
message exchange. Finally, AMX calls the task's Task Termination
Procedure and frees the task's stack and TCB for reuse.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKMX Task has no message exchange
CJ_ERTKPR Invalid task priority (must be 1 to 127)
CJ_ERTKABORT Task cannot be deleted until a call to cjtkterm

provides a Task Termination Procedure

Note If the task which is being deleted has an unacknowledged message in its
possession, AMX will automatically call cjtkmsgack to acknowledge the
message and return an answer-back status of CJ_EROK to the task which is
waiting for the acknowledgement.

The task's message exchange is flushed as described for procedure
cjmxflush.

...more

AMX Procedures KADAK 331

Task Switch An immediate task switch will occur. AMX invokes the Kernel Task to
initiate deletion of the task and then resumes execution of the highest
priority ready task.

Restrictions A task cannot be deleted until the task's termination is enabled using
cjtkterm.

You must only use use cjtkxdelete to delete a message exchange task.
Use cjtkdelete to delete all other tasks.

You must not delete a task which is waiting, or is about to wait, for any
AMX resource such as a buffer from a buffer pool, a resource or counting
semaphore, events in an event group or a message from a mailbox or
message exchange. Failure to observe this restriction may lead to
unexpected and unpredictable faults.

See Also cjmxflush, cjmxdelete, cjtkdelete, cjtkmxinit, cjtkterm

332 KADAK AMX Procedures

cjtkxkill cjtkxkill

Purpose Kill (Flush) a Message Exchange Task

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtkxkill(CJ_ID taskid);

Description taskid is the task id of the message exchange task to be killed. A
message exchange task can kill itself.

AMX forces the message exchange task which is to be killed to begin (or
resume) execution. AMX then resets the task's trigger count to zero,
flushes all messages from the task's message exchange, calls the task's
Task Termination Procedure and ends the task.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTKMX Task has no message exchange
CJ_ERTKABORT Task cannot be killed until a call to cjtkterm

provides a Task Termination Procedure

Note If the task which is being killed has an unacknowledged message in its
possession, AMX will automatically call cjtkmsgack to acknowledge the
message and return an answer-back status of CJ_EROK to the task which is
waiting for the acknowledgement.

The task's message exchange is flushed as described for procedure
cjmxflush.

...more

AMX Procedures KADAK 333

Task Switch An immediate task switch will occur. AMX invokes the Kernel Task to
initiate the task kill and then resumes execution of the highest priority
ready task.

Restrictions A task cannot be killed until the task's termination is enabled using
cjtkterm.

You must only use use cjtkxkill to kill a message exchange task. Use
cjtkkill to kill all other tasks.

You must not kill a task which is waiting, or is about to wait, for any
AMX resource such as a buffer from a buffer pool, a resource or counting
semaphore, events in an event group or a message from a mailbox or
message exchange. Failure to observe this restriction may lead to
unexpected and unpredictable faults.

See Also cjmxflush, cjtkkill, cjtkterm

334 KADAK AMX Procedures

cjtmbuild cjtmbuild

Purpose Build (Create) an Interval Timer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtmbuild(CJ_ID *tmidp,

struct cjxtmdef *tmdefp);

Description tmidp is a pointer to storage for the timer id of the interval timer allocated
to the caller.

tmdefp is a pointer to an interval timer definition. Structure cjxtmdef is
defined in file CJZZZSD.H as follows:

struct cjxtmdef {
CJ_TAGDEF xtmdtag; /* Timer tag */
CJ_TMRPROC xtmdproc; /* Timer Procedure pointer */
CJ_TIME xtmdperiod; /* Timer period */
void *xtmdparam; /* A(Timer parameter) */
};

xtmdtag is a 4-character array for the interval timer name tag.

xtmdproc is a pointer to the Timer Procedure to be executed whenever the
timer expires.

xtmdperiod is the timer interval, measured in system ticks, to be used if
the timer is periodic. Xtmdperiod must be >= 0. Set xtmdperiod = 0
for a one-shot timer.

xtmdparam is a pointer to an application specific parameter or variable.
The pointer xtmdparam is passed to the Timer Procedure whenever it is
called by AMX. If no parameter is required by the Timer Procedure,
set xtmdparam = NULL.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*tmidp contains a valid timer id.

Errors returned:
For all errors, the timer id at *tmidp is undefined on return.
CJ_ERTMVALUE Invalid timer period (must be >= 0)
CJ_ERTMNONE No free timer

...more

AMX Procedures KADAK 335

Note Creating an interval timer does not automatically start the timer. Use
cjtmwrite to start the timer.

Example #include "CJZZZ.H"
extern long timerAinfo; /* Timer A parameter */

/* Timer Procedure A */
extern void CJ_CCPP timerAproc(CJ_ID timerid, long *paramAp);

/* Timer Procedure B */
extern void CJ_CCPP timerBproc(CJ_ID timerid, void *unused);

static struct cjxtmdef timerdefA = {
{"Tm-A"}, /* Timer A tag */
(CJ_TMRPROC)timerAproc, /* Timer Procedure A */
0, /* Timer A is not periodic */
&timerAinfo /* A(timer A parameter) */
};

CJ_ID CJ_CCPP maketimerA(void) {
CJ_ID timerid;

if (cjtmbuild(&timerid, &timerdefA) == CJ_EROK) {
/* Start timer A */
if (cjtmwrite(timerid, 1) == CJ_EROK)

return(timerid);

/* Serious fault; delete timer A */
cjtmdelete(timerid);
}

return(CJ_IDNULL); /* Error */
}

CJ_ID CJ_CCPP maketimerB(void) {
struct cjxtmdef timerdefB;
CJ_ID timerid;

*(CJ_TYTAG *)&timerdefB.xtmdtag = cjcftag("Tm-B");
timerdefB.xtmdproc = (CJ_TMRPROC)timerBproc;
timerdefB.xtmdperiod = cjtmconvert(1000); /* 1 second */
timerdefB.xtmdparam = NULL;

if (cjtmbuild(&timerid, &timerdefB) == CJ_EROK) {
/* Start timer B */
if (cjtmwrite(timerid, timerdefB.xtmdperiod)

== CJ_EROK)
return(timerid);

/* Serious fault; delete timer B */
cjtmdelete(timerid);
}

return(CJ_IDNULL); /* Error */
}

See Also cjtmcreate, cjtmdelete, cjksfind

336 KADAK AMX Procedures

cjtmconvert cjtmconvert

Purpose Convert Milliseconds to System Ticks

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_TIME CJ_CCPP cjtmconvert(unsigned long ms);

Description ms is the number of milliseconds.

Interrupts � Disabled � Enabled � Restored

Returns ntick = the number of system ticks which will occur in ms milliseconds.

If the clock frequency is such that ms milliseconds requires more than 231

system ticks, ntick will be set to 231-1.

If the clock frequency is such that ms milliseconds is less than one half of
a system tick, ntick will be set to 0.

Restrictions Avoid using this procedure in ISPs or Timer Procedures where execution
speed is critical. For example, if an ISP must start a timer, use
cjtmconvert during initialization to derive ntick. The ISP can then use
ntick to start the timer without the execution penalty imposed by
cjtmconvert.

AMX Procedures KADAK 337

cjtmcreate cjtmcreate

Purpose Create an Interval Timer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtmcreate(CJ_ID *tmidp, char *tag,

CJ_TMRPROC tmproc, CJ_TIME tmperiod,
void *tmparam);

Description tmidp is a pointer to storage for the timer id of the interval timer allocated
to the caller.

tag is a pointer to a 4-character string for the interval timer name tag.

tmproc is a pointer to the Timer Procedure to be executed whenever the
timer expires.

tmperiod is the timer interval, measured in system ticks, to be used if the
timer is periodic. Tmperiod must be >= 0. Set tmperiod = 0 for a
one-shot timer.

tmparam is a pointer to an application specific parameter or variable. The
pointer tmparam is passed to the Timer Procedure whenever it is called
by AMX. If no parameter is required by the Timer Procedure, set
tmparam = NULL.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*tmidp contains a valid timer id.

Errors returned:
For all errors, the timer id at *tmidp is undefined on return.
CJ_ERTMVALUE Invalid timer period (must be >= 0)
CJ_ERTMNONE No free timer

Note Creating an interval timer does not automatically start the timer. Use
cjtmwrite to start the timer.

...more

338 KADAK AMX Procedures

Example #include "CJZZZ.H"
/* Timer C parameter */

extern struct timerdata timerCinfo;

/* Timer Procedure C */
extern void CJ_CCPP timerCproc(CJ_ID timerid,

struct timerdata *tmrCdatap);

CJ_ID CJ_CCPP maketimerC(void) {
CJ_ID timerid;

if (cjtmcreate(&timerid,
"Tm-C",
(CJ_TMRPROC)timerCproc,
0, &timerCinfo) == CJ_EROK) {

/* Start timer C */
if (cjtmwrite(timerid, 5) == CJ_EROK)

return(timerid);

/* Serious fault; delete timer C */
cjtmdelete(timerid);
}

return(CJ_IDNULL); /* Error */
}

See Also cjtmbuild, cjtmdelete, cjksfind

AMX Procedures KADAK 339

cjtmdelete cjtmdelete

Purpose Delete an Interval Timer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtmdelete(CJ_ID timerid);

Description timerid is the timer id of the interval timer to be deleted.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTMID Invalid timer id
CJ_ERTMBUSY Interval timer is active

Note A Timer Procedure can delete the interval timer with which it is
associated.

An active interval timer cannot be deleted. Use cjtmwrite to stop the
timer before you try to delete it.

Restrictions You must be absolutely certain that no other task, ISP or Timer Procedure
is in any way using or about to use the interval timer. Failure to observe
this restriction may lead to unexpected and unpredictable faults.

See Also cjtmbuild, cjtmcreate, cjtmwrite

340 KADAK AMX Procedures

cjtmread cjtmread

Purpose Read the Time Remaining in an Interval Timer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtmread(CJ_ID timerid, CJ_TIME *tvalp);

Description timerid is the timer id of the interval timer of interest.

tvalp is a pointer to storage for the current value of the timer measured in
system ticks.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful
*tvalp contains the timer value measured in system ticks. The value is
the number of system ticks remaining before the timer will expire.

Errors returned:
For all errors, the value at *tvalp is undefined on return.
CJ_ERTMID Invalid timer id

See Also cjtmwrite

AMX Procedures KADAK 341

cjtmslice cjtmslice

Purpose Change a Task's Time Slice Interval

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtmslice(CJ_ID taskid, unsigned int tslice);

Description taskid is the task id of the task whose time slice interval is to be altered.

tslice is the new time slice interval measured in system ticks.
(0 <= tslice < 65536)

Set tslice = 0 to stop time slicing the task.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTKID Invalid task id
CJ_ERTMVALUE Invalid time slice interval

See Also cjtmtsopt

342 KADAK AMX Procedures

cjtmtick cjtmtick

Purpose Read System Tick Counter

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_T32U CJ_CCPP cjtmtick(void);

Description AMX maintains a 32-bit unsigned count of the number of elapsed system
ticks. The counter wraps from 232-1 to 0.

The AMX system tick counter will match the hardware clock tick count
only if the AMX system clock is configured such that every hardware
clock tick is an AMX system tick.

Interrupts � Disabled � Enabled � Restored

Returns The current value of the 32-bit unsigned AMX system tick counter.

AMX Procedures KADAK 343

cjtmtsopt cjtmtsopt

Purpose Enable or Disable Time Slicing

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
void CJ_CCPP cjtmtsopt(int option);

Description option = CJ_NO to disable time slicing.
option = CJ_YES to enable time slicing.

Interrupts � Disabled � Enabled � Restored

Returns Nothing

See Also cjtmslice

344 KADAK AMX Procedures

cjtmwrite cjtmwrite

Purpose Start/Stop an Interval Timer

Used by � Task � ISP � Timer Procedure � Restart Procedure � Exit Procedure

Setup Prototype is in file CJZZZKF.H.
#include "CJZZZ.H"
CJ_ERRST CJ_CCPP cjtmwrite(CJ_ID timerid, CJ_TIME tval);

Description timerid is the timer id of the interval timer of interest.

tval is the timer interval measured in system ticks. Tval must be >= 0.
Set tval = 0 to stop the timer.

Interrupts � Disabled � Enabled � Restored

Returns Error status is returned.
CJ_EROK Call successful

Errors returned:
CJ_ERTMID Invalid timer id
CJ_ERTMVALUE Invalid interval value (must be >= 0)

Note A Timer Procedure associated with a periodic timer can stop the timer by
calling cjtmwrite with tval = 0. The periodic timer can be restarted by
calling cjtmwrite with tval = n. The timer will expire after n system
ticks and resume periodic operation with its predefined period.

Non periodic timers (one-shots) can be retriggered by their associated
Timer Procedure using cjtmwrite to restart the timer.

See Also cjtmread

Reserved Words KADAK 345

A. AMX Reserved Words

cjkkpppp AMX C procedure name pppp for service of class kk
cjxtttt AMX structure name of type tttt
xttttyyy Member yyy of an AMX structure of type tttt

CJ_ID AMX object identifier (handle)
CJ_ERRST Completion status returned by AMX service procedures
CJ_CCPP Procedures use C parameter passing conventions
CJ_ssssss Reserved symbols defined in AMX header files

CJ_ERXXXX AMX Error Code XXXX
CJ_WRXXXX AMX Warning Code XXXX
CJ_FEXXXX AMX Fatal Exit Code XXXX

CJZZZFFF.XXX AMX filenames
CJZZZ.H Generic AMX include file

The ZZZ in each AMX filename is the 3-digit AMX part number used by KADAK to
identify the AMX target processor. For example, file CJZZZSD.H is an AMX header file
for any version of AMX. File CJ999SD.H is the same AMX header file for the version of
AMX which operates on the processor identified by KADAK part number 999.

File CJZZZ.H is a generic include file which includes the subset of target specific AMX
header files needed for compilation of your application C code. By including file
CJZZZ.H in your source modules, your AMX application becomes readily portable to
other target processors.

The generic include file CJZZZ.H is a copy of the corresponding part numbered AMX
file. For example, if you are developing for the processor identified by KADAK part
number 999, the file CJZZZ.H is a copy file CJ999.H.

Symbol Type File Purpose

CJ_CCPP #define CJ_ZZZCC.H C parameter passing keyword
CJ_CCISIZE #define CJ_ZZZCC.H Size of integer
CJ_CCONST1 #define CJ_ZZZCC.H const precedes type
CJ_CCONST2 #define CJ_ZZZCC.H const follows type
CJ_CCHUGE #define CJ_ZZZCC.H Use huge for large arrays
CJ_CCREG #define CJ_ZZZCC.H C supports register variables
CJ_CCVOL #define CJ_ZZZCC.H C supports volatile variables

CJ_MAXMSZ #define CJ_ZZZSD.H Default AMX message envelope size
CJ_MAXMSZ #define CJ_ZZZAPP.H AMX message envelope size

as revised by your application

346 KADAK Reserved Words

Symbol Type File Purpose

CJ_IDNULL #define CJ_ZZZCC.H Null AMX object id (handle)
CJ_NULL #define CJ_ZZZCC.H Null data or data pointer
CJ_NULLFN #define CJ_ZZZCC.H Null function pointer
CJ_YES #define CJ_ZZZCC.H Boolean true
CJ_NO #define CJ_ZZZCC.H Boolean false
CJ_PROCID #define CJ_ZZZCC.H Processor identifier

CJ_ID typedef CJ_ZZZCC.H AMX object id (handle)
CJ_TIME typedef CJ_ZZZCC.H Interval timer value
CJ_T8 typedef CJ_ZZZCC.H Signed 8-bit value
CJ_T16 typedef CJ_ZZZCC.H Signed 16-bit value
CJ_T32 typedef CJ_ZZZCC.H Signed 32-bit value
CJ_T8U typedef CJ_ZZZCC.H Unsigned 8-bit value
CJ_T16U typedef CJ_ZZZCC.H Unsigned 16-bit value
CJ_T32U typedef CJ_ZZZCC.H Unsigned 32-bit value
CJ_TMRPROC typedef CJ_ZZZCC.H Timer Procedure pointer
CJ_TASKPROC typedef CJ_ZZZCC.H Task Procedure pointer
CJ_ISPPROC typedef CJ_ZZZCC.H ISP pointer
CJ_VOIDPROC typedef CJ_ZZZCC.H Void function pointer

void (*)(void)
CJ_VPPROC typedef CJ_ZZZCC.H Void function pointer

void (*)(void *)

CJ_ERRST #define CJ_ZZZKC.H AMX error status
CJ_MAXxxxxx #define CJ_ZZZKC.H Maximum parameter value
CJ_MINxxxxx #define CJ_ZZZKC.H Minimum parameter value

CJ_TYTAG typedef CJ_ZZZKC.H Tag value
CJ_TAGDEF typedef CJ_ZZZKC.H Tag definition

CJ_PRVNxxxx #define CJ_ZZZKT.H Processor vector numbers
CJ_MAXxxxxx #define CJ_ZZZKT.H Maximum parameter value
CJ_MINxxxxx #define CJ_ZZZKT.H Minimum parameter value

CJ_TRAPPROC typedef CJ_ZZZKT.H Task Trap Handler pointer
CJ_TYREG typedef CJ_ZZZKT.H Processor register
CJ_TYFLAGS typedef CJ_ZZZKT.H Processor flags register

CJ_EVxxxxxx #define CJ_ZZZSD.H Event Manager constants
CJ_TDFxxxxx #define CJ_ZZZSD.H Time/Date format specifications
CJ_MATSxxxx #define CJ_ZZZSD.H Task status masks
CJ_MATAxxxx #define CJ_ZZZSD.H Task attribute masks
CJ_MAFNxxxx #define CJ_ZZZSD.H Scheduler Hook masks
CJ_KCCFxxxx #define CJ_ZZZSD.H Task Termination Procedure

reason codes

CJ_TERMPROC typedef CJ_ZZZSD.H Task Termination Procedure pointer
CJ_TDPROC typedef CJ_ZZZSD.H Time/Date Scheduling Procedure pointer

Error Codes KADAK rev9 347

B. AMX Error Codes
AMX error codes are signed integers. Codes less than zero are error codes. Codes
greater than zero are warning codes. To assist you during testing, the hexadecimal value
of the least significant 16-bits of the error code is listed as it might appear in a register or
memory dump.

Mnemonic Value Value Meaning
(dec) (hex)

CJ_EROK 0 0 Call successful
CJ_ERTKID -1 0xFFFF Invalid task id
CJ_ERTKNONE -2 0xFFFE No free task
CJ_ERTKPR -3 0xFFFD Invalid task priority
CJ_ERTKSTORE -4 0xFFFC Task storage too small
CJ_ERTKABORT -5 0xFFFB Task abort not allowed
CJ_ERTKTERM -6 0xFFFA Task termination in progress
CJ_ERTKTRAP -7 0xFFF9 Invalid task trap
CJ_ERTKMX -8 0xFFF8 Task message exchange mismatch

CJ_ERTMID -10 0xFFF6 Invalid timer id
CJ_ERTMNONE -11 0xFFF5 No free interval timer
CJ_ERTMBUSY -12 0xFFF4 Timer busy (cannot delete)
CJ_ERTMVALUE -13 0xFFF3 Invalid timing interval

CJ_ERNOENVLOP -15 0xFFF1 No message envelope available
CJ_ERNOEXIST -16 0xFFF0 Cannot find id of object with tag/key
CJ_ERNOACCESS -17 0xFFEF Cannot access interrupt vector
CJ_ERRANGE -18 0xFFEE Out of range
CJ_ERFORMAT -19 0xFFED Format error (function dependent)

CJ_ERMBID -20 0xFFEC Invalid mailbox id
CJ_ERMBNONE -21 0xFFEB No free mailbox
CJ_ERMBBUSY -22 0xFFEA Mailbox busy (cannot delete)
CJ_ERMBFULL -23 0xFFE9 Mailbox full
CJ_ERMBDEPTH -24 0xFFE8 Invalid mailbox depth

CJ_ERAKNOTASK -27 0xFFE5 Message not from another task
(Conversion interface only)

CJ_ERAKVALUE -28 0xFFE4 Answer-back status must be >= 0
CJ_ERAKNEED -29 0xFFE3 Cannot wait for another message until

current message has been ACKed

CJ_ERSMID -30 0xFFE2 Invalid semaphore id
CJ_ERSMNONE -31 0xFFE1 No free semaphore
CJ_ERSMBUSY -32 0xFFE0 Semaphore busy (cannot delete)
CJ_ERSMVALUE -33 0xFFDF Invalid semaphore value
CJ_ERSMOWNER -34 0xFFDE Only owner can release a resource
CJ_ERSMOVF -35 0xFFDD Semaphore count overflow
CJ_ERSMUV -36 0xFFDC Semaphore usage violation

348 KADAK Error Codes

AMX Error Codes (continued)

Mnemonic Value Value Meaning
(dec) (hex)

CJ_EREVID -40 0xFFD8 Invalid event group id
CJ_EREVNONE -41 0xFFD7 No free event group
CJ_EREVBUSY -42 0xFFD6 Event group busy (cannot delete)

CJ_ERBMID -50 0xFFCE Invalid buffer pool id
CJ_ERBMNONE -51 0xFFCD No free buffer pool
CJ_ERBMBUSY -52 0xFFCC Pool busy (cannot delete)
CJ_ERBMSIZE -53 0xFFCB Buffer size too small
CJ_ERBMNBUF -54 0xFFCA No buffers provided
CJ_ERBMNOUSE -55 0xFFC9 Buffer not in use
CJ_ERBMUSEOVF -56 0xFFC8 Buffer use count overflow
CJ_ERBMBADP -57 0xFFC7 Invalid buffer pointer

CJ_ERMMID -60 0xFFC4 Invalid memory pool id
CJ_ERMMNONE -61 0xFFC3 No free memory pool
CJ_ERMMSIZE -62 0xFFC2 Memory size too small
CJ_ERMMBADP -63 0xFFC1 Invalid memory block pointer
CJ_ERMMNOUSE -64 0xFFC0 Memory block not in use
CJ_ERMMUSEOVF -65 0xFFBF Memory block use count overflow
CJ_ERMMGROW -66 0xFFBE Cannot grow size of block (resize)
CJ_ERMMALIGN -67 0xFFBD Memory not long aligned

CJ_ERMXID -70 0xFFBA Invalid message exchange id
CJ_ERMXNONE -71 0xFFB9 No free message exchange
CJ_ERMXBUSY -72 0xFFB8 Message exchange busy (cannot delete)
CJ_ERMXFULL -73 0xFFB7 Message exchange full
CJ_ERMXDEPTH -74 0xFFB6 Invalid exchange mailbox depth
CJ_ERMXMBNUM -75 0xFFB5 Invalid exchange mailbox number

Error Codes KADAK rev9 349

AMX Warning Codes

Mnemonic Value Value Meaning
(dec) (hex)

CJ_WRTKWAKEP 1 0x0001 Task not waiting; 1 wake pending
CJ_WRTKWAKEN 2 0x0002 Task not waiting; >1 wake pending
CJ_WRTKDELAY 3 0x0003 Task wake occurred during delay
CJ_WRTMOUT 4 0x0004 Timed out
CJ_WRAKNOWAIT 5 0x0005 Message sender is not waiting for ACK
CJ_WRMBEMPTY 6 0x0006 Mailbox is empty
CJ_WRSMINUSE 7 0x0007 Semaphore is in use
CJ_WRBMNOBUF 8 0x0008 No buffer available
CJ_WRBMMEMSIZ 9 0x0009 Not enough memory for n buffers
CJ_WRMMNOMEM 10 0x000A No memory available
CJ_WRMXEMPTY 11 0x000B Message exchange is empty
CJ_WREVNOEVT 12 0x000C No event match
CJ_WRMBFLUSH 13 0x000D Mailbox flushed
CJ_WRMXFLUSH 14 0x000E Message exchange flushed
CJ_WRTKFLUSH 15 0x000F Task flushed
CJ_WRAKNOTASK 16 0x0010 Message not from another task
CJ_WRSMMISS 17 0x0011 Semaphore deadline missed

AMX Fatal Exit Codes

Mnemonic Value Value Meaning
(dec) (hex)

CJ_FENOMEM 1 0x0001 Not enough Kernel Data memory
CJ_FETRAP 2 0x0002 Fatal exception trap
CJ_FEISPTRAP 3 0x0003 Task exception trap in ISP
CJ_FETKTRAP 4 0x0004 Task exception trap occurred:

in a Restart Procedure or
in a Timer Procedure or
in a task with no task trap handler

CJ_FENOEXIT 5 0x0005 No exit from permanent system
CJ_FEROMSYS 6 0x0006 ROMed Kernel received a request which

it is not configured to handle
CJ_FEBPNEST 7 0x0007 Nested breakpoint encountered
CJ_FEBPISP 8 0x0008 Cannot breakpoint on ISP
CJ_FEBPVECT 9 0x0009 Breakpoint Manager cannot install vectors
CJ_FECFG 10 0x000A Invalid System Configuration
CJ_FENOIRB 11 0x000B No Interrupt Request Blocks available
CJ_FESMUV 12 0x000C Semaphore usage violation

350 KADAK Error Codes

This page left blank intentionally.

Generator Specifications KADAK 351

C. Configuration Generator Specifications

C.1 Introduction
If you are not doing your software development on a PC or compatible running
Microsoft® Windows®, then you will be unable to use the interactive Configuration
Manager for Windows to create and edit your AMX System Configuration Module. You
may, however, still be able to use the Configuration Generator to assist you in this
process by porting it to your development system as described in Appendix C.4.

As described in Chapter 15.2, the Configuration Generator merges the information from
your User Parameter File with a template of a standard System Configuration Module to
produce your module. Since the User Parameter File is a text file, you are free to use the
text editor of your choice to create and/or edit this file.

The System Configuration Template provided with AMX has been coded in C. Although
a portable subset of the C language has been used, you may have to edit the template file
to reflect the capabilities of your particular C compiler.

For these reasons, source code of the template file and the Configuration Generator
program has been provided with AMX to allow the Configuration Generator to be ported
to your software development environment.

To assist you in this process, the specifications for the User Parameter File and the
System Configuration Template are presented in this appendix.

352 KADAK Generator Specifications

C.2 User Parameter File Specification
The User Parameter File is a text file structured as illustrated in Figure C.2-1. The file
consists of a sequence of keywords of the form ...XXX which begin in column one. Each
keyword is followed by one or more parameters which you must provide.

; Constant definitions
...UPT NKG,UMS,CLP,CLF,NTK,NTM
...MGR NMB,NSM,NEV,NBP,NMP,NMX
...OPT TSLICE,ROMS,CAT,BKPT
...STK KSS,ISS
;
; Time/Date Manager selection
...TAD MYSHED
;
; Your task definitions
...TDT PROC,TKTAG,ATTR,STORE,PR,SLICE,TKID
;
; Your message exchange task definitions
...TMX QD0,QD1,QD2,QD3,TKMXTAG,TKID
;
; Your Restart Procedures
...RRX RRPROC1
;
; Your Exit Procedures
...EXX EXPROC1
;
; Your interval timer definitions
...TMR PROC,PERIOD,PARAM,TMTAG,TMID
;
; Your semaphore definitions
...SEM SMVAL,SMTAG,SMID
;
; Your event group definitions
...EVG EVAL,EVTAG,EVID
;
; Your mailbox definitions
...MBX QDEPTH,MBTAG,MBID
;
; Your message exchange definitions
...MEX QDO,QD1,QD2,QD3,MXTAG,MXID
;
; Your buffer pool definitions
...PDT BPN,BPS,BPTAG,BPID
;
; Your memory pool definitions
...MEM MPP,MPS,MPTAG,MPID,MPTYPE

Figure C.2-1 User Parameter File

Generator Specifications KADAK 353

The example in Figure C.2-1 uses symbolic names for all of the parameters following
each of the keywords. The symbols correspond to the screen fields described in Chapter
15. You are referred to that chapter for detailed descriptions of each of the parameters.

The order of keywords in the User Parameter File is not particularly critical. For
convenience, the keywords have been ordered to closely follow the order of the
corresponding entries in your System Configuration Module.

The file begins with a set of constant definitions.

NKG Number of message envelopes
UMS Size of AMX message
CLP AMX clock period (in hardware ticks)
CLF Hardware clock frequency (hz)
NTK Maximum number of tasks
NTM Maximum number of timers
NMB Maximum number of mailboxes
NSM Maximum number of semaphores
NEV Maximum number of event groups
NBP Maximum number of buffer pools
NMP Maximum number of memory pools
NMX Maximum number of message exchanges
TSLICE Time slice option (0 = No; 1 = Yes)
ROMS AMX is installed in separate ROM (0 = No; 1 = Yes)
CAT AMX configuration attributes (set to 0)
BKPT AMX Breakpoint Manager used (0 = No; 1 = Yes)
KSS AMX Kernel Stack size
ISS AMX Interrupt Stack size

The Time/Date Manager is selected as follows. If you have provided a Time/Date
Scheduling Procedure, include its name as illustrated. If you do not have such a
procedure, omit the name but keep the line with keyword ...TAD.

If you do not want to use the Time/Date Manager, delete the line with keyword ...TAD.

354 KADAK Generator Specifications

Each of your predefined tasks must be defined using keyword ...TDT. The order of
these definitions will determine their order of creation by AMX. If you do not wish to
predefine any tasks, delete the line with keyword ...TDT.

The parameters in each task definition are as follows.

PROC Task procedure name
TKTAG Task tag
ATTR Attributes
STORE Task storage size (bytes)
PR Task priority
SLICE Time slice interval
TKID Task id variable name

Note that the task tag must include exactly four displayable characters. Spaces and tabs
are not allowed.

Each of your predefined message exchange tasks must be defined using keyword
...TMX. The order of these definitions, although not critical, will determine the order in
which AMX will initialize and start these tasks. For each line with keyword ...TMX
there must be a corresponding and matching task definition line with keyword ...TDT. If
you do not wish to predefine any message exchange tasks, delete the line with keyword
...TMX.

For each message exchange task, the definitions describe the private message exchange
for the task. The parameters in each private message exchange definition are as follows.

QD0 Mailbox 0 depth
QD1 Mailbox 1 depth
QD2 Mailbox 2 depth
QD3 Mailbox 3 depth
TKMXTAG Task message exchange tag
TKID Task id variable name

Note that the task tag must include exactly four displayable characters. Spaces and tabs
are not allowed. The task message exchange tag is usually chosen to match the task's tag.
The task's message exchange id will be stored in id variable TKID_mx.

Define all of your Restart Procedures in the order in which you wish them to be
executed. Note that you are only defining your own procedures. Restart Procedures
required by any of the AMX Managers will automatically be installed for you.

Define all of your Exit Procedures in the order in which you wish them to be executed.
If you have no Exit Procedures, omit the line containing keyword ...EXX.

Generator Specifications KADAK 355

Each of your predefined interval timers must be defined using the keyword ...TMR.
The order of these definitions will determine their order of creation by AMX. If you do
not wish to predefine any timers, delete the line with keyword ...TMR.

The parameters in each timer definition are as follows:

PROC Timer Procedure name
PERIOD Timer period in system ticks (0 = oneshot)
PARAM Parameter variable name
TMTAG Timer tag
TMID Timer id variable name

Note that the timer tag must include exactly four displayable characters. Spaces and tabs
are not allowed.

Each of your predefined semaphores must be defined using the keyword ...SEM. The
order of these definitions will determine their order of creation by AMX. If you do not
wish to predefine any semaphores, delete the line with keyword ...SEM.

The parameters in each semaphore definition are as follows:

SMVAL Initial semaphore value
- 1 for resource semaphore
>=0 for counting semaphore

SMTAG Semaphore tag
SMID Semaphore id variable name

Note that the semaphore tag must include exactly four displayable characters. Spaces and
tabs are not allowed.

Each of your predefined event groups must be defined using the keyword ...EVG. The
order of these definitions will determine their order of creation by AMX. If you do not
wish to predefine any event groups, delete the line with keyword ...EVG.

The parameters in each event group definition are as follows:

EVAL Initial value of event flags
EVTAG Event group tag
EVID Event group id variable name

Note that the event group tag must include exactly four displayable characters. Spaces
and tabs are not allowed.

356 KADAK Generator Specifications

Each of your predefined mailboxes must be defined using the keyword ...MBX. The
order of these definitions will determine their order of creation by AMX. If you do not
wish to predefine any mailboxes, delete the line with keyword ...MBX.

The parameters in each mailbox definition are as follows:

QDEPTH Message queue depth
MBTAG Mailbox tag
MBID Mailbox id variable name

Note that the mailbox tag must include exactly four displayable characters. Spaces and
tabs are not allowed.

Each of your predefined message exchanges must be defined using the keyword ...MEX.
The order of these definitions will determine their order of creation by AMX. If you do
not wish to predefine any message exchanges, delete the line with keyword ...MEX.

The parameters in each message exchange definition are as follows:

QD0 Message queue 0 depth
QD1 Message queue 1 depth
QD2 Message queue 2 depth
QD3 Message queue 3 depth
MXTAG Message exchange tag
MXID Message exchange id variable name

Note that the message exchange tag must include exactly four displayable characters.
Spaces and tabs are not allowed.

Each of your predefined buffer pools must be defined using the keyword ...PDT. The
order of these definitions will determine their order of creation by AMX. If you do not
wish to predefine any buffer pools, delete the line with keyword ...PDT.

The parameters in each buffer pool definition are as follows:

BPN Number of buffers in the buffer pool
BPS Size in bytes of each buffer
BPTAG Buffer pool tag
BPID Buffer pool id variable name

Note that the buffer pool tag must include exactly four displayable characters. Spaces
and tabs are not allowed.

Generator Specifications KADAK 357

Each of your predefined memory pools must be defined using the keyword ...MEM. The
order of these definitions will determine their order of creation by AMX. If you do not
wish to predefine any memory pools, delete the line with keyword ...MEM.

The parameters in each memory pool definition are as follows:

MPP Memory pool pointer
MPS Size in bytes of the memory pool
MPTAG Memory pool tag
MPID Memory pool id variable name
MPTYP Memory pool pointer type

0 = absolute address
1 = external array of MPS characters

Note that the memory pool tag must include exactly four displayable characters. Spaces
and tabs are not allowed.

358 KADAK Generator Specifications

C.3 System Configuration Template
The System Configuration Template is a source file which defines a System
Configuration Module for any system using AMX and its managers. It is recommended
that you list file CJZZZCG.CT and examine it carefully before trying to read this
description.

The template file consists of KADAK macro definitions for all of the various components
of a System Configuration Module. The macro definitions are followed by code
generating instances of these macros. Conditional assembly is used to inhibit elements in
the module which are not required if the corresponding AMX option has not been
selected.

A KADAK macro consists of a macro definition statement, a body of source language
statements and directives and a macro end statement. The macro definition and end
statements are a special pair of directives defined by KADAK.

A simple example is shown below.

[~...MAC ...TMR PROC,PERIOD,PARAM,TMTAG,TMID
/* Timer Procedure */

void CJ_CCPP ~1~(CJ_ID timerid, void *tmparam);

#if (~P3~)
extern void * ~3~; /* Timer parameter */
#endif
[~...ENDM

The macro definition statement contains a macro directive ([~...MAC), a parameter
keyword (...TMR) and an optional comment string (PROC,PERIOD,etc.). These three
fields are separated by one or more space and/or tab characters.

The macro directive must start in the first column. The first character of the directive
must be the KADAK macro identification character [.

The second character in the directive is the parameter delimiter character. This can be
any printable character but is reserved exclusively for identifying parameters within the
body of the macro. It must not appear in any other context within the macro body. We
have chosen the character ~ because it is not required in any of the macro definitions in
the System Configuration Template.

Immediately after the parameter delimiter character comes the macro definition keyword
...MAC.

The parameter keyword (...TMR) identifies a particular keyword in the User Parameter
File which contains the parameter list needed for expansion of the macro body.

The comment string is optional and is normally used to provide a descriptive list of the
macro parameters. The comment string is not used in the parameter substitution process.

Generator Specifications KADAK rev8 359

Macro parameters appear in the macro body as parameter identifiers. A parameter
identifier is a decimal integer preceded and followed by the delimiter character defined in
the macro definition statement (~1~, ~2~, etc.). The number identifies the parameter in
the particular parameter list specified by the parameter keyword. The parameter is copied
from the User Parameter File into the source language macro body replacing the
particular identifier. The parameters are numbered 1 to n from left to right in the
parameter list following the keyword in the User Parameter File.

A second form of macro parameter has the letter P preceding the number in the parameter
identifier, as in the #if statement in the example. This form directs the Configuration
Generator to replace the parameter identifier with the character 1 if the identified
parameter is present in the parameter list. If the parameter is missing from the parameter
list, the Configuration Generator replaces the parameter identifier with the character 0.

In the above example the macro requires the first and third parameter values from a line
in the User Parameter File containing the keyword ...TMR. If the third parameter is
missing from the keyword parameter list in the User Parameter File, the #if statement
will be false, inhibiting the compiler directive extern which, without valid arguments,
would produce a compilation error.

The macro is terminated by the macro end directive containing the macro keyword
...ENDM.

When the Configuration Generator encounters a macro definition in the System
Configuration Template File, it scans the User Parameter File for a matching parameter
keyword. The macro body is expanded and copied into the System Configuration
Module File once for each matching parameter keyword located in the User Parameter
File.

A third type of directive is used to define an incremental integer variable. An
incremental variable is defined with an initial value and an increment which is added to
the variable each time a macro containing the variable is expanded by the Configuration
Generator. Note that this [~...VAR directive begins with the KADAK macro
identification character [and a parameter delimiter character as required by all KADAK
macro directives. The variable name is a string of printable characters preceded and
followed by one or more space and/or tab characters. Although only one incremental
variable is allowed, its name, initial value and increment can be redefined and used with
other macros.

The example below illustrates the use of an incremental variable.

[~...VAR &TN 1,1 Start at task 1
[~...MAC ...TDT PROC,TKTAG,ATTR,STORE,PR,SLICE,TKID

/* Storage for task &TN (tag ~2~) */
static CJ_HUGE char cj_kdstore&TN[~4~];
[~...ENDM

The first statement in this example is a directive defining an incremental variable named
&TN. Both its initial value and increment are 1.

360 KADAK Generator Specifications

Each time the Configuration Generator expands the macro, the current value of the
incremental variable is substituted for the variable name wherever it appears within the
macro body. For example, assume that the fifth task definition in the User Parameter File
is listed as follows:

...TDT taskproc5,TSK5,0,2048,0,task5id

When the Configuration Generator encounters this task definition, the current value of
the incremental variable &TN will be 5. Therefore the body of the macro will be expanded
as follows:

/* Storage for task 5 (tag TSK5) */
static CJ_HUGE char cj_kdstore5[2048];

Note that the value of the incremental variable is not updated by its increment until after
the macro end directive is encountered.

To gain a better insight to this whole process, run the Configuration Manager on a PC
even if you are not doing development on a PC. Use it to create a simple AMX system
with two or three predefined tasks. Use the manager to generate the System
Configuration Module. Then view the User Parameter File and the System Configuration
Module produced by the Configuration Manager. Compare the latter file with the System
Configuration Template to see exactly how the parameter identifiers have been replaced
by parameters from your User Parameter File.

Generator Specifications KADAK rev8 361

C.4 Porting the Configuration Generator
The Configuration Manager uses the Configuration Generator to generate your System
Configuration Module. If you are not doing your development on a PC or compatible,
you may wish to port the Configuration Generator to your development system.

The Configuration Generator is a utility program provided with AMX. The program is
written in C with portability in mind. Source file CJZZZCG.C is delivered with AMX.

To port the Configuration Generator to your development system, compile the module
CJZZZCG.C using your C compiler. Link the resulting object module with your C Run-
Time Library to produce a version of the Configuration Generator which will execute in
your environment.

The command line syntax to run the Configuration Generator is as follows.

CJZZZCG upfname ctfname scfname -q -w -bsss -esss

upfname User Parameter File filename
ctfname System Configuration Template filename
scfname System Configuration Module filename

All three filenames must be present in the order specified. Each must include the full
path to the file if the file is not in the current directory. Each filename must include both
name and extension.

Command line switches beginning with - are optional and must follow the filenames.

The -q (quiet) switch, if present, will inhibit the display of all informational or error
messages on the standard output device (stdout). This switch is used by the
Configuration Manager to inhibit the Configuration Generator from writing to the display
screen when it is invoked by the manager.

The Configuration Generator will ignore a KADAK macro in the template file if the User
Parameter File contains no instances of the macro keyword. By default, there is no
indication in the output file that the unused macro has been stripped. If the -w switch is
used, the Configuration Generator will echo the macro definition statement to the output
file and follow it with the comment "Unused in this configuration".

362 rev8 KADAK Generator Specifications

By default, the Configuration Generator uses the macro identification character [from
the macro directive as a comment character to identify the comments inserted into the
output file in response to the -w switch.

This default assumption can be overridden using the -b and -e switches to define
alternate comment delimiter strings. The strings sss can be up to 16 characters long.
Special characters must be inserted using the character pair ^x for each special character.
Special characters are:

^b blank (space) (ASCII 0x20)
^t tab (ASCII 0x09)
^r return (ASCII 0x0D)
^n new-line (ASCII 0x0A)
^^ the character ^ (ASCII 0x5E)

Since the System Configuration Module file scfname will be a C source file, you should
always use the switches -b/* and -e*/ with the -w switch to force the Configuration
Generator's comment strings to begin and end with the C comment delimiter strings /*
and */.

AMX Library Construction KADAK 363

D. AMX Library Construction

D.1 Building the AMX Library
AMX Libraries are delivered prebuilt, thoroughly exercised and ready for use with the
toolsets supported by KADAK. There should be no need to remake the AMX Library
although some developers do so just to confirm that they can. Obviously, if you have
altered the AMX source code, you will have to rebuild the AMX Library. In some cases,
you may be using an out-of-date toolset which requires a rebuild of AMX for backwards
compatibility.

If you rebuild AMX with a new set of tools that has not yet been tested by KADAK, it is
possible that you will encounter toolset warnings or errors. For example, the tool vendor
may have changed the syntax for some assembly language directives or revised the
definition of its archive or link or locate specification files. In the worst case, the vendor
may have introduced a code generation fault which produces an invalid code sequence
within the AMX kernel. If you suspect such a fault, revert to the AMX Library shipped
with AMX and report the problem to KADAK's technical support staff.

Let nnn be the three digit AMX part number identifying the particular variant of AMX
that you wish to rebuild. See the list of AMX part numbers in Chapter 1.2 of the Getting
Started manual.

Let XX be the two or three character toolset id for the toolset combination for which you
wish to remake AMX. See the list of supported toolset ids in Chapter 1.5 of the Getting
Started manual.

It is assumed that AMX has been installed into directory ...\AMXnnn ready for use with
toolset XX.

Environment Variables

Before constructing the AMX Library, you must first set several Windows environment
variables which are needed to build AMX. Be sure to check the list of required Windows
environment variables presented in the header of toolset dependent batch file
ENnnnXX.BAT in AMX directory ...\AMXnnn\MAKE.

Environment variables PATH, TMP and TEMP are required by most toolsets. Variable PATH
allows the command line tools to be run. Variables TMP and/or TEMP provide access to a
directory which the tools can use for temporary file storage.

Environment variables TOOLPATH and CJPATH are required by the AMX batch files used
to run the tools when making the AMX Library. Variable TOOLPATH provides the full
path to the directory in which the tools were installed. Variable CJPATH provides the full
path to the AMX installation directory ...\AMXnnn.

Environment variable AMX_ENDN is also required to rebuild AMX. Set variable
AMX_ENDN=L to make little endian libraries. Set AMX_ENDN=B to make big endian libraries.
The variable will have no effect if the endian nature of the processor is fixed.

Other toolset dependent environment variables such as AMX_TSAFE may also be required
to rebuild AMX. Such variables, if required, are documented in the header of the toolset
dependent batch file ENnnnXX.BAT in AMX directory ...\AMXnnn\MAKE.

364 KADAK AMX Library Construction

Making the AMX Library

To construct the AMX Library, you must first open a Windows Command Prompt
window. From the Windows Start, Run... menu, type cmd and press Enter. Alternatively,
select Command Prompt from the Windows Start menu or any of its sub-menus.

Make sure that you have set all of the Windows environment variables as described on
the previous page.

Make AMX directory ...\AMXnnn\MAKE the current directory and run toolset dependent
batch file ENnnnXX.BAT in that directory. You must do this to specify the version number
of the toolset XX tools that you are using to rebuild AMX. In most cases, the version
number for the C/C++ compiler is used to indicate the toolset version.

In the following example, the toolset version number is given the name toolver for
illustration purposes. Use the value which corresponds to the version of the tools which
you are using. Allowable values are documented in the header of the toolset dependent
batch file ENnnnXX.BAT.

...\AMXnnn\MAKE>ENnnnXX toolver

Within AMX directory ...\AMXnnn\MAKE you will find two other toolset dependent files
which are used to build the AMX Library.

File CJnnnXX.MAK is the make specification file which will be used by your MAKE utility
to build the library. This file purposely avoids constructs and directives that tend to vary
among make utilities. You may have to edit this file to meet the requirements of your
particular make utility.

File CJnnnXX.BAT is a batch file used by the make specification file to run the command
line tools for toolset XX.

To build AMX, you will need a make utility such as Microsoft NMAKE.EXE. Your
Windows PATH environment variable must provide access to this utility. Before starting
the make process, delete all header files (*.DEF and *.H), if any, which previous builds
may have left in directory ...\AMXnnn\MAKE. Then issue the following command.

! Make AMX using Microsoft NMAKE
...>NMAKE -fCJnnnXX.MAK "TOOLSET=XX"

When the make is complete, directory ..\TOOLXX\LIB will contain your updated AMX
Library and object modules.

Directory ..\ERR will contain zero or more text files which summarize the error
messages, if any, produced during the make process.

Note that if you add the Microsoft /N switch immediately following the NMAKE directive
on the command line, the make utility will list the make operations on the screen but will
not actually do the make. This can be helpful in locating path problems if you have not
properly installed AMX or have not provided correct Windows environment variables.

AMX Library Construction KADAK 365

Common Problems

When rebuilding the AMX Library, a number of Windows related or MAKE dependent
problems may be encountered.

Your MAKE utility must be able to issue simple commands such as COPY and ERASE. It
must also be able to invoke the batch file CJnnnXX.BAT which is used to run the
assembler, C compiler, linker/locator and librarian for toolset XX.

Some MAKE utilities are provided in different forms for use in different environments.
Choose the simplest version which can be executed within the Windows Command
Prompt window. Note that the AMX make process has only been tested in a standard
Windows Command Prompt environment. The AMX make process is not intended for
use under stand-alone DOS or MS-DOS.

So what is a standard Windows Command Prompt environment? It is the configuration
of Windows on your PC which allows your MAKE utility to run batch file CJnnnXX.BAT
and still have enough memory free to use the assembler, C/C++ compiler, linker/locator
and librarian for toolset XX. Try to start with at least 500K of memory available.

RAM drives and temporary disk storage can also be problems. If all of your extended
memory is used for a RAM drive, there may not be enough memory free for use by the
MAKE utility and the software tools. If the drive specified by your TMP or TEMP
environment variable for use for temporary files is almost full, compilations or links may
fail. In the past, some tools have been observed to crash or hang if they run out of
memory or disk space. Sad but true!

In some cases, the Windows command line length can impose a restriction which may
affect the construction process if your CJPATH environment variable specifies a long path
string. For example, if you install AMX 68000 in directory D:\PROJECT\YOURAPP, then
variable CJPATH must be defined as CJPATH=D:\PROJECT\YOURAPP\AMX532. The build
process will then use CJPATH to reference source and object files like:

D:\PROJECT\YOURAPP\AMX532\TOOLXX\SRC\CJ532KA.C
D:\PROJECT\YOURAPP\AMX532\TOOLXX\LIB\CJ532KA.O

If both of these strings appear in a single command within the batch file CJnnnXX.BAT,
the command might fail.

If you suspect that this problem is occurring, use the SUBST command to substitute a
single drive letter, say Z:, for the path string D:\PROJECT\YOURAPP as in the following
example.

SUBST Z: D:\PROJECT\YOURAPP
SET CJPATH=Z:

366 KADAK AMX Library Construction

This page left blank intentionally.

AMX Library Construction KADAK 367

D.2 A Custom AMX Library
AMX Libraries are delivered prebuilt, thoroughly exercised and ready for use with the
toolsets supported by KADAK. There should be no need to remake the AMX Library.
However, there are a few adaptations that can be made to reconfigure the AMX Library
to meet your special needs.

To implement any of these adaptations, you must make minor edits to AMX header
source file CJnnnAPP.H in AMX installation directory AMXnnn\TOOLXX\DEF.

Altering the AMX Message Size

AMX messages originate as user defined blocks of 12 or more sequential bytes of
memory. The maximum length (n >= 12) is determined by you when you create your
System Configuration Module. If you declare the message length to be greater than 12,
you must edit AMX header source file CJnnnAPP.H and define symbol CJ_MAXMSZ to
have the value specified by your configuration.

Symbol CJ_MAXMSZ is normally not defined in header file CJnnnAPP.H. Its definition is
required to ensure that your application modules and your AMX System Configuration
Module use the configured AMX message length. If the message length specified in your
system configuration does not match that specified in header file CJnnnAPP.H, you will
get a compilation error when you try to compile your AMX System Configuration
Module.

Although you must edit file CJnnnAPP.H to change the AMX message length, there is no
need to rebuild the AMX Library.

Using Resource Manager Functions

The AMX Semaphore Manager supports all forms of resource semaphore. To distinguish
the use of resource semaphores from all other kinds of semaphores, the resource
management procedures are given names of the form cjrmXXXX.

By default, the AMX resource management procedures are mapped directly to procedures
within the AMX Semaphore Manager. This mapping may complicate the testing of your
AMX system since the resource procedures will not appear in your symbol table and will
therefore not be accessible by your debugger. To overcome this difficulty, edit AMX
header source file CJnnnAPP.H and define symbol CJ_OPTRM as follows:

#define CJ_OPTRM

The mere definition of symbol CJ_OPTRM ensures that your application modules and your
AMX System Configuration Module will reference the resource procedures in the AMX
Library instead of mapping them to equivalent procedures in the AMX Semaphore
Manager.

Although you must edit file CJnnnAPP.H to add your definition of symbol CJ_OPTRM,
there is no need to rebuild the AMX Library.

368 KADAK AMX Library Construction

Reducing AMX Code Size

Many of the functions within the AMX Library include parameter checking sequences
upon entry to the functions to detect receipt of invalid parameters from your application
code. These checks reject invalid calls, returning the appropriate error code to the caller.

By default, AMX funnels all errors and warnings which it generates through to the AMX
User Error Procedure cjkserror in source file CJnnnUF.C as described in Chapter 14.2.

You can make a minor reduction in the AMX the code footprint and improve the
execution speed of some functions by revising the AMX Library to omit these parameter
checks and error traps. Edit AMX header source file CJnnnAPP.H and define symbol
CJ_OPTVAL, CJ_OPTERROR or CJ_OPTWARN to be 0 (instead of 1) to omit the corresponding
feature.

If you edit file CJnnnAPP.H and revise the definitions of any of the above symbols, you
must rebuild the AMX Library as described in Appendix D.1.

Omitting Priority Inversion Detection

The AMX Semaphore Manager supports resource semaphores which use priority
inheritance to resolve priority inversions. This feature was added to the AMX kernel in
early 2003. You may wish to rebuild the AMX Library to omit this feature so that your
AMX Library resembles that of an earlier AMX release, albeit with all other revisions in
place. Doing so will reduce the code footprint of the AMX Semaphore Manager but will
have little impact on the speed of execution of its services.

Symbol CJ_OPTINHERIT in AMX header source file CJnnnAPP.H controls support for
priority inheritance as a method for resolving priority inversions within resource
semaphores which permit such resolution.

To omit this feature, edit file CJnnnAPP.H and define symbol CJ_OPTINHERIT to be 0,
instead of its default value of n = 1000.

The magic number n is an upper bound used by the Semaphore Manager to prevent
endless thrashing by tasks which are deadlocked or otherwise hopelessly tangled in their
attempts to resolve multiple, simultaneous priority inversions. If a task has to raise the
priority of a lower priority task more than n times in order to resolve a priority inversion
involving a specific resource, then the tasks are probably deadlocked for other reasons.

Reducing the value of the magic number n to some value less than 5 may permit you to
detect occurrences of complex priority inversion scenarios which, although eventually
resolved successfully, are actually adversely affecting the timing of events within your
application. The value 1000 was arbitrarily chosen to ensure that serious deadlocks
arising from inversions are eventually reported to your application.

If you edit file CJnnnAPP.H and alter the value of symbol CJ_OPTINHERIT, you must
rebuild the AMX Library as described in Appendix D.1.

Index KADAK rev9 Index-1

A
Ack-back message

(see Mailbox, ack-back message)
(see Message exchange, ack-back message)

Acknowledge message
(see Mailbox, message acknowledge)
(see Message exchange, message acknowledge)

Address fault 54
AMX Library 187, 195, 363–368

build 363–366
customize 367, 368

AMX service class
(see Class of AMX service)

AMX Service Procedures
Beginning on page 187
Ending on page 344

AMX Target Guide 2
AMX Tool Guide 2
Answer-back status

(see Mailbox, answer-back status)
(see Message exchange, answer-back status)

Arithmetic overflow 49, 137
Array bounds violations 49, 137
Assemblers

(Refer to AMX Tool Guides)

B
Basic resource

(see Semaphore, resource, basic)
Binary semaphore

(see Semaphore, binary)
Boolean flags

(see Event group, flags)
Bounded semaphore

(see Semaphore, bounded)
Bounds checking 49, 137
Breakpoint Manager 157
Buffer 111–17

find buffer pool id 114
free 111, 113
get 111, 113
ownership 18, 111, 113, 115, 116, 117
size 112, 113, 114
use count 112–17
wait for buffer 113

Buffer Manager 18, 111–17
Service Procedure Summary 191

Buffer pool 3, 18, 111–17
create 112
delete 114
find id 112
id 3, 111, 112, 114, 177
maximum number 111, 112, 160
number of buffers 111, 112
predefine using Builder 149, 176, 177
status 114
storage allocation 112
synchronization using 18
tag 112, 177
wait queue 18, 113

Building an AMX system
(Refer to AMX Tool Guides)
(see also Configuration Builder)

Bus fault 54

C
C language interface

Service Procedure Summary 193, 194
Calendar clock 58, 66–71

(see also Time/Date Manager)
calloc 119
Ceiling, priority 84
Century 68, 70, 71
Circular list 3, 19, 127, 128, 129

element 4, 127, 128, 129
ISP use 43
slot 5, 127, 128, 129
storage size 128, 129
structure 129

Circular List Manager 19, 127, 128, 129
Service Procedure Summary 192

cjbmbuild 112, 160, 176, 197
cjbmcreate 112, 160, 176, 199
cjbmdelete 114, 201
cjbmfree 43, 61, 113, 202
cjbmget 26, 43, 61, 113, 203
cjbmid 112, 114, 204
cjbmsize 114, 205
cjbmstatus 114, 206
cjbmuse 43, 113, 207
cjcfxxxxxx 208
cjclabl 209
cjclatl 209
cjclinit 128, 210
cjclrbl 212
cjclrtl 212
cjevbuild 87, 160, 170, 213
cjevcreate 87, 90, 160, 170, 215
cjevdelete 88, 216
cjevread 88, 217
cjevsignal 43, 47, 61, 88, 90, 218
cjevstatus 88, 219
cjevwait 26, 47, 87, 88, 91, 220
cjevwaits 88, 222
cjksbreak 139
cjksenter 21, 22, 229
cjkserror 139, 223
cjksexit 21, 230
cjksfatal 54, 137, 138, 224
cjksfind 23, 60, 75, 87, 95, 103, 112, 122, 225
cjksgbfind 225
cjkshook 140, 227
cjksitrap 49
cjksivtwr 55, 186
cjksivtx 186
cjksixxxxx 228
cjkslaunch 11, 20, 21, 22, 229
cjksleave 16, 21, 39, 230
cjkspriv 231
cjksver 232
cjlmcreate 134, 136, 233

Index-2 rev9 KADAK Index

cjlmhead 136, 234
cjlminsc 235
cjlminsh 236
cjlminsk 134, 136, 237
cjlminst 136, 238
cjlmmerg 239
cjlmnext 136, 240
cjlmordk 134, 241
cjlmprev 242
cjlmrmvc 134, 136, 243
cjlmrmvh 244
cjlmrmvt 245
cjlmtail 246
cjmbbuild 95, 160, 172, 247
cjmbcreate 95, 98, 160, 172, 249
cjmbdelete 97, 250
cjmbflush 95, 97, 251
cjmbsend 24, 26, 30, 33, 37, 39, 43, 47, 61, 95, 99,

115, 252
cjmbstatus 97, 254
cjmbwait 24, 26, 30, 47, 96, 99, 255
cjmmbuild 160, 178, 257
cjmmcreate 122, 126, 160, 178, 259
cjmmdelete 125, 261
cjmmfree 123, 262
cjmmget 123, 126, 263
cjmmid 123, 264
cjmmresize 124, 265
cjmmsection 122, 124, 179, 266
cjmmsize 124, 267
cjmmuse 123, 268
cjmxbuild 146, 160, 174, 269
cjmxcreate 103, 107, 146, 160, 174, 271
cjmxdelete 105, 272
cjmxflush 103, 105, 273
cjmxsend 24, 26, 30, 33, 37, 43, 47, 61, 103, 104,

107, 109, 274
cjmxstatus 105, 276
cjmxwait 24, 26, 30, 47, 104, 105, 108, 146, 277
cjrmbuild 75, 77, 78, 160, 168, 279
cjrmcreate 75, 77, 83, 160, 168, 281
cjrmcreatex 75, 78, 168, 281
cjrmdelete 75, 282
cjrmfree 77, 283
cjrmrls 77, 83, 284
cjrmrsv 26, 77, 78, 83, 285
cjrmstatus 75, 286.1
cjsmbuild 75, 76, 160, 168, 287
cjsmcreate 75, 76, 80, 81, 160, 168, 289
cjsmdelete 75, 81, 290
cjsmsignal 43, 46, 61, 76, 80, 82, 291
cjsmstatus 75, 292
cjsmwait 26, 46, 76, 80, 81, 293
cjtdfmt 70, 294
cjtdget 295
cjtdset 68, 296
cjtkbuild 23, 146, 159, 163, 297
cjtkcreate 23, 146, 159, 163, 300
cjtkdelay 26, 31, 302
cjtkdelete 142, 303
cjtkend 32, 50, 141, 142, 143, 306
cjtkid 307
cjtkkill 142, 308

cjtkmsgack 30, 96, 105, 303, 306, 308, 309, 317, 330,
332

cjtkmxid 147, 310
cjtkmxinit 146, 147, 311
cjtkpradjust 78, 312.1
cjtkpriority 78, 313
cjtkresume 145, 314
cjtkstatus 315
cjtkstop 147, 317
cjtksuspend 78, 145, 318
cjtktcb 40, 319
cjtkterm 142, 143, 320
cjtktrigger 24, 26, 27, 43, 48, 61, 107, 109, 322
cjtkwait 26, 30, 46, 85, 145, 323
cjtkwaitclr 325
cjtkwaitm 26, 30, 46, 326
cjtkwake 30, 43, 46, 61, 85, 328
cjtkxdelete 142, 147, 330
cjtkxkill 142, 147, 332
cjtmbuild 60, 159, 166, 334
cjtmconvert 31, 60, 61, 81, 90, 91, 99, 107, 108, 336
cjtmcreate 31, 60, 61, 90, 107, 159, 166, 337
cjtmdelete 31, 60, 61, 339
cjtmread 31, 43, 61, 340
cjtmslice 65, 164, 341
cjtmtick 342
cjtmtsopt 63, 65, 343
cjtmwrite 31, 43, 60, 61, 90, 107, 166, 344

Index KADAK rev9 Index-3

Class of AMX service
cjbmxxxx - buffer pool, buffer 191
cjcfxxxx - C language interface 193, 194
cjcfxxxx - processor support 193, 194
cjclxxxx - circular list 192
cjevxxxx - event group 190
cjksixxx - interrupt control 193
cjksxxxx - system control 188
cjlmxxxx - linked list 192
cjmbxxxx - mailbox 191
cjmmxxxx - memory pool, memory block 191
cjmxxxxx - message exchange 191
cjrmxxxx - resource semaphore 190
cjsmxxxx - counting semaphore 190
cjtdxxxx - time/date 190
cjtkxxxx - task control 189
cjtkxxxx - task termination 189
cjtmxxxx - timer 190

Clock frequency 59, 158
Clock Handler 3, 15, 31, 52, 59
Clock installation 59
Clock Interrupt Handler 59, 185, 186
Clock ISP 15, 52, 59
Clock ISP root 59, 181, 185, 186
Clock tick 3, 15, 57, 158

(see also System tick)
Code size 368
Compilers

(Refer to AMX Tool Guides)
Compute bound 32, 68, 144
Concurrent execution 9
Configuration Builder 149–79, 181–86
Configuration Generator 44, 53, 59, 150, 151, 152,

182, 183, 184, 351–62
porting 150, 182, 351–62

Configuration Manager 150–79, 182, 183, 184
field editing 154, 155
menu selections 154

Configuration module
(see System Configuration Module)

Conforming ISP
(see also Clock ISP)
(see Interrupt Service Procedure, conforming)

Constructing an AMX system
(Refer to AMX Tool Guides)
(see also Configuration Builder)

Context switching 13, 14, 15
Convert ms to system ticks 60
Coprocessor 82, 83, 140
Critical code section 51, 144

D
Day of week 68, 70, 71
Debugging aid 40, 139
Development tools

(Refer to AMX Tool Guides)
Device input/output services 193
Disable interrupts 193
Divide by zero 49, 137
Download

(Refer to AMX Tool Guides)

E
Enable interrupts 193
Endian 363
Envelope

(see Message envelope)
Error codes 3, 139, 347, 348
Error codes (user codes) 139
Error Procedure 139
Event group 3, 17, 47, 85–91

create 86, 87
delete 88
find id 87
flags 85, 87, 88
id 3, 86–91, 171
initial state 87
ISP/task synchronization 47
maximum number 87, 160
predefine using Builder 170, 171
pulsed events 87, 88
read 88
signal 17, 85, 88, 89, 90, 91
state (latched) events 87, 88
status 88
synchronization using 17, 87–91
tag 87, 171
wait for event(s) 17, 88, 89, 90, 91

Event Manager 17, 30, 47, 85–91
Service Procedure Summary 190

Exception traps 49, 50, 54, 55
(see also Task, traps)

Exit
(see System, shutdown)

Exit codes
(see Fatal exit codes)

Exit Procedures 3, 16, 39, 161, 162
interrupt state 39
stack size 39

Index-4 rev9 KADAK Index

F
Fatal error 3
Fatal exit 3, 49, 54, 137, 138
Fatal exit codes 137, 138, 349
Fatal exit codes (user codes) 137
Fatal Exit Procedure 54, 137, 138

interrupt state 138
stack size 138

Faults (processor exceptions) 54, 55
Fences (stack) 40
File names (AMX files) 7
Flags

(see Event group, flags)
Flush mailbox 95, 97
Flush message exchange 103, 105
free 119

G
Group id

(see Event group, id)
Grow a memory block 124

H
Handle 4
Hardware Definition Table 181
Header files (AMX files) 7
Hoist task 73, 78, 84

I
I/O, device input/output services 193
Id variables 149

buffer pool 177
event group 171
mailbox 173
memory pool 179
message exchange 165, 175
semaphore 169
task 164, 165
timer 167

Include files (AMX files) 7
Installation

clock 59, 185, 186
ISP 44, 55, 185, 186

Instruction counting 31
Integer size 7

Interrupt
disable by cjcfdi 193
enable by cjcfei 193
external 14, 41, 42, 44, 45, 51, 52, 55
initial state 20
nested 14, 42, 43, 45
response 14, 29, 41, 52
state 29, 38, 39, 42, 61, 62, 69, 138, 139, 196

Interrupt Handler 3, 4, 14, 42–48, 52, 53, 55, 82, 181,
185, 186
clock

(see Clock Interrupt Handler)
installation 185, 186
shared 53

Interrupt Service Procedure 4, 14, 41–55
conforming 3, 14, 42–48, 52, 53, 55, 181, 185, 186
installation 44, 55, 185, 186
nonconforming 5, 14, 42, 51, 52, 55
non-maskable (NMI) 51, 55
stack size 42, 45, 52
task synchronization 46, 47, 48

Interrupt Stack 14, 42, 45, 52, 157
Interrupt Supervisor 14, 41–55

Service Procedure Summary 193
Interrupt Vector Table 55, 185, 186
ISP

(see Interrupt Service Procedure)
ISP root 3, 4, 14, 42, 43, 44, 52, 53, 55, 82, 181, 185,

186
ISP root, clock 59, 181, 185, 186

K
Kernel Stack 38, 52, 61, 62, 68, 69, 156
Kernel Task 4, 15, 28, 29, 31, 46, 47, 59, 60, 61, 62,

65, 67, 68, 145, 156
priority 28

Key
(see Linked list, key)

Key node
(see Linked list, key node)

L
Latched event flags 87, 88
Launch 20, 21, 22

permanent 20, 22
temporary 20, 21

Leave
(see System, shutdown)

Librarian
(Refer to AMX Tool Guides)

Library, AMX 187, 195

Index KADAK rev9 Index-5

Linked list 4, 19, 131–36
create 134, 135, 136
head 132
header 132, 134, 135, 136
ISP use 43
key 131–36
key node 132, 134, 135, 136
node 132–36
node offset 132, 134, 135, 136
nomenclature 132
object 131–36
tail 132

Linked List Manager 19, 131–36
Service Procedure Summary 192

Linkers and Locators
(Refer to AMX Tool Guides)

M
Mailbox 4, 16, 18, 24, 33, 34, 47, 93–99

ack-back message 96, 97
acknowledge message 30, 32, 33, 96, 97
answer-back status 96, 97
create 95
delete 97
find id 95
flush messages/tasks 95, 97
id 4, 94, 95, 97, 173
ISP/task synchronization 47
maximum number 95, 160
message queue 4, 16, 18, 33, 34, 93, 95, 96, 97,

173
predefine using Builder 172, 173
queue depth 16, 95, 173
send message to 47, 93–99
status 97
synchronization using 18, 93–99
tag 95, 173
wait for message 47, 93–99
wait queue 18, 93, 96, 97

Mailbox Manager 18, 30, 47, 93–99
Service Procedure Summary 191

Make utilities 364
(Refer to AMX Tool Guides)

malloc 119
Math coprocessor 82, 83, 140
Memory allocation 18, 119, 122–26

Memory block 4, 119–26
find memory pool id 123
find size 124
free 18, 119, 123, 126
get 18, 119, 123, 126
header 121
ownership 18, 119, 121, 123
resize (grow or shrink) 124
use count 121, 123

Memory management unit 140
Memory Manager 18, 119–26

nomenclature 121
Service Procedure Summary 191

Memory paging 140
Memory pool 4, 18, 119–26

create 122
delete 125
find id 122
id 4, 121, 122, 126, 179
maximum number 119, 122, 160
predefine using Builder 178, 179
private 119, 126
section 4, 18, 119, 121, 122, 124, 179
section (add to pool) 124
size 119, 122
tag 122, 179

Memory section
(see Memory pool, section)

Message 4
alignment 33, 37
flush from mailbox 95, 97
flush from message exchange 103, 105
from ISP 47
passing 16, 33–37, 47, 93–99, 101–9
priority 5, 16

(see Message exchange, message priority)
size 33, 34, 37, 95, 103, 367

Message acknowledge
(see Mailbox, message acknowledge)
(see Message exchange, message acknowledge)

Message envelope 3, 16, 33–37, 93, 95, 96, 97, 101,
103, 104, 105
maximum number 156
size 156

Index-6 rev9 KADAK Index

Message exchange 4, 16, 18, 24, 33, 34, 35, 36, 47,
101–9
(see also Message Exchange Task)
ack-back message 104, 105, 147
acknowledge message 30, 32, 33, 35, 36, 104, 105,

147
answer-back status 104, 105, 147
create 103
delete 105
find id 103
flush messages/tasks 103, 105
id 5, 102, 103, 105, 165, 175
ISP/task synchronization 47
maximum number 103, 160
message priority 5, 16, 18, 33, 34, 35, 36, 101–5
message queue 16, 18, 33, 34, 35, 36, 101–5, 175
predefine using Builder 174, 175
private 146, 160
queue depths 103, 175
send message to 47, 101–9
status 105
synchronization using 18, 101–9
tag 103, 165, 175
wait for message 47, 101–9
wait queue 18, 101, 102, 104, 105

Message Exchange Manager 18, 30, 47, 101–9
Service Procedure Summary 191

Message Exchange Task 5, 24, 146, 147
automatic trigger 146
create 146
delete 142, 143, 144, 147
deletion priority 144
initialize 146
kill 142, 143, 144, 147
message exchange id 146, 147
predefine using Builder 149, 160, 165
queue depths 165
stop 141, 142, 143, 144, 147

Message priority
(see Message exchange, message priority) .

Message queue 5
(see Mailbox, message queue)
(see Message exchange, message queue)

Message send
(see Mailbox, send to/wait for)
(see Message exchange, send to/wait for)

Multitasking 9

N
Names, AMX reserved 7, 345, 346
NMI (Non-maskable interrupt) 51, 55
Node

(see Linked list, node)
Nomenclature 7, 195
Nonconforming ISP

(see Interrupt Service Procedure, nonconforming)
Non-maskable interrupt (NMI) 51, 55
Numeric coprocessor 82, 83, 140

O
Overflow (arithmetic) 49, 137
Ownership

buffer 111, 113, 115, 116, 117
memory block 119, 121, 123
resource 77, 78, 82, 83

P
Preemption 13
Priority

(see Buffer, wait for buffer)
(see Event group, wait for event(s))
(see Kernel Task, priority)
(see Mailbox, wait for message)
(see Message exchange, message priority)
(see Message exchange, wait for message)
(see Semaphore, counting, wait)
(see Semaphore, resource, reserve)
(see Task termination, deletion priority)
(see Task, priority)

Priority ceiling 84
Priority inheritance resource

(see Semaphore, resource, priority inheritance)
Priority inversion 73, 78, 84, 368

hoist task 73, 78, 84
omit feature 368
thrash count 84, 368

Priority scheduling 28
Privilege violation 54
Privileged

(see Task, privileged)
Procedures, AMX

Beginning on page 187
Ending on page 344

Procedures, AMX (summary of) 187
Processor exceptions (traps) 49, 50, 54, 55, 181

(see also Task, traps)
Processor initialization 20, 38, 39
Processor support

(Refer to AMX Target Guide)
(see Target Configuration Module)
Service Procedure Summary 193, 194

Pulsed event flags 87, 88

Q
Queue

(see also Circular list)
(see also Linked list)
(see Buffer pool, wait queue)
(see Event group, wait queue)
(see Mailbox, message queue)
(see Mailbox, wait queue)
(see Message exchange, message queue)
(see Message exchange, wait queue)
(see Semaphore, wait queue)

Index KADAK rev9 Index-7

R
RAM (random access memory) 5, 7, 22, 55
Real-time clock

(see Clock)
Reentrant code 53, 116, 119, 127, 131, 188
Reserved words 7, 345, 346
Resolution

(see Timer, resolution)
Resource management 17
Resource ownership 77, 78, 82, 83
Resource semaphore

see Semaphore, resource
Restart Procedures 5, 11, 20, 38, 161, 162

interrupt state 38
stack size 38

Resume task 145
ROM (read only memory) 5, 7, 22, 55
Round robin scheduling 58

S
Scheduler hooks 140

(see also Time/Date Scheduling Procedure)
Scheduling algorithm 13, 27, 28, 58, 63, 64, 65
Section

(see Memory pool, section)
(see Segment)

Segment 5
Semaphore 5, 17, 46, 73–84

binary 3, 17, 73, 76, 77, 79, 80
bounded 3, 73, 76, 168, 169
counting 3, 17, 46, 73–76, 81, 82, 168, 169

create 75, 76
delete 75
signal 76
status 75
upper limit 73, 76, 169
wait 76

find id 75
id 5, 74, 75, 77, 169
ISP/task synchronization 46
maximum number 75, 160
mutual exclusion 76, 79, 80
P and V operations 73
predefine using Builder 168, 169
resource 5, 17, 73, 74, 75, 77–78, 82, 83, 168, 169

basic 5, 73, 77, 168, 169
create 75, 77, 78
delete 75
nesting 77, 82, 83
priority inheritance 5, 73, 78, 84, 168, 169
release 77
reserve 77, 78
status 75

synchronization using 81, 82
tag 75, 169
wait queue 17, 76–78

Semaphore Manager 17, 30, 46, 73–84, 367
Service Procedure Summary 190

Send message
(see Mailbox, send to/wait for)
(see Message exchange, send to/wait for)

Service Procedure Summary 187–93
Service Procedures, AMX

Beginning on page 187
Ending on page 344

Shrink a memory block 124
Software development

(Refer to AMX Tool Guides)
Stack checking 40
Stack fences 40
Stack overflow 40
Stack size

Exit Procedures 39
Fatal Exit Procedure 138
Interrupt Service Procedure 42, 45, 52
Interrupt Stack 42, 45, 52, 157
Kernel Stack 38, 52, 61, 62, 68, 69, 156
Restart Procedures 38
task 39, 42, 50, 52, 143, 164
Task Termination Procedure 143
Task Trap Handler 50
Time/Date Scheduling Procedure 68, 69
Timer Procedure 61, 62
User Error Procedure 139
User Scheduler Hooks 140

State driven event flags 87, 88
Suspend task 145
Symbols, AMX reserved 7, 345, 346
Synchronization 30

(see Event group, synchronization using)
(see Mailbox, synchronization using)
(see Message exchange, synchronization using)
(see Semaphore, synchronization using)
(see Task, wait/wake synchronization using)

System
parameters 156–60, 185, 186
ROMed 55, 157
shutdown 16, 21, 39
startup 11, 20, 21, 22, 27, 38

System Configuration Module 5, 11, 21, 22, 149–54,
351, 358–62

System Configuration Template 150, 151, 152, 351,
358–61

System control
Service Procedure Summary 188

System Documentation Module 150, 151, 152
System Documentation Template 150, 151, 152
System generation process 149–79, 181–86
System tick 6, 15, 57, 158

(see also Clock tick)
convert ms to 60

Index-8 rev9 KADAK Index

T
Tag 6
Target Configuration Module 6, 11, 20, 44, 53, 59,

181–86
Target Configuration Template 182, 183, 184
Target Parameter File 44, 53, 55, 59, 182–86
Target processors

(Refer to AMX Target Guide)
Task 6, 11, 23–32

create 23
delay 31
delete 142, 143, 144, 147
deletion priority 144
end 13, 32, 65, 141, 142, 143
execution 13, 27, 28, 29, 48
find id 23
flush from mailbox 95, 97
flush from message exchange 103, 105
hoist 73, 78, 84
id 6, 23, 142, 164
interrupt state 29
ISP synchronization 46, 47, 48
kill 142, 143, 144, 147
maximum number 23, 159
periodic execution 27
predefine using Builder 149, 163, 164, 165
priority 6, 28, 32, 63, 64, 65, 73, 78, 84, 164
privileged 29
resume 145
stack 24, 29, 32, 39, 40, 42, 50, 52, 143, 149, 164
stack size 39, 42, 50, 52, 164
start 24, 27, 29, 32, 65
state 11, 25–32, 57, 140–45
stop 141, 142, 143, 144, 147
suspend 145
synchronization 30

(see also Synchronization)
tag 23, 40, 164
time slice 5, 58, 63, 64, 65, 78, 164
timed wait 31
timeout 30, 31
timing 15, 31, 57, 58, 59, 63, 64, 65
traps 49, 50, 137
trigger 24, 27, 32, 48, 142
wait/wake synchronization 46, 85

Task control
Service Procedure Summary 189

Task Control Block (TCB) 6, 23, 40, 140
reserved for user 40, 140

Task Scheduler 13, 14, 27, 28, 32, 43, 45, 58, 63, 64,
65, 140, 141
user hooks 140

Task switching 42, 43, 45
Task termination 141, 142, 143, 144, 147

delete 142, 143, 144, 147
deletion priority 144
enable/disable 142
kill 142, 143, 144, 147
Service Procedure Summary 189
stop 141, 142, 143, 144, 147

Task Termination Procedure 142, 143
Task Trap Handler 49, 50, 137

stack size 50
TCB (see Task Control Block) 6
Tick

(see Clock tick)
(see System tick)

Time slice 6, 58, 63, 64, 65, 78
enable/disable 63, 64, 65, 158
interval 5, 63, 64, 65
with priority inheritance 78

Time/Date
ASCII formatting 70, 71
century 68, 70, 71
day of week 68, 70, 71
default 67
get 66, 67
set 66, 67, 68
structure 67, 68, 69
timer 67
validity 68, 70, 71

Time/Date Manager 17, 58, 66–71, 158
Service Procedure Summary 190

Time/Date Scheduling Procedure 66, 67, 68, 69, 158
interrupt state 69
stack size 68, 69

Timer 6, 11, 31, 57–62
(see also Time/Date, timer)
create 60
delete 60
find id 60
id 6, 60, 167
interval 60, 61
maximum number 60, 159
one-shot 60
parameter 57, 60, 61, 167
periodic 15, 27, 57, 59, 60, 61
predefine using Builder 166, 167
resolution 31
start 60
stop 60
tag 60, 167

Index KADAK rev9 Index-9

Timer Manager 15, 31, 57–71
Service Procedure Summary 190

Timer Procedure 6, 15, 31, 57, 60, 61, 62, 167
interrupt state 61, 62
parameter 57, 60, 61, 167
stack size 61, 62

Timing control
(see Timer Manager)

Tools
(Refer to AMX Tool Guides)

Traps
(see Task, traps)

U
User error codes 139
User Error Procedure 139
User fatal exit codes 137
User Parameter File 150–55, 351–62
User Parameter Table 21, 22, 149
User Scheduler Hooks 140
User warning codes 139

V
Variables, id 149

(see also Id variables)
Vector Table 55, 185, 186
Volatile variable access 193

W
Wait queue

(see Buffer pool, wait queue)
(see Event group, wait queue)
(see Mailbox, wait queue)
(see Message exchange, wait queue)
(see Semaphore, wait queue)

Warning codes 139, 349
Warning codes (user codes) 139

	Cover
	Table of Contents
	1. AMX Overview
	1.1 Introduction
	1.2 Glossary
	1.3 AMX Nomenclature

	2. General AMX Operation
	2.1 Introduction to Multitasking
	2.2 AMX Operation
	2.3 AMX Managers
	2.4 Starting AMX

	3. Application Tasks
	3.1 Task Creation
	3.2 Task States
	3.3 Starting a Task
	3.4 Task Priority
	3.5 Task Execution
	3.6 Task and Event Synchronization
	3.7 Task Timing
	3.8 Ending a Task
	3.9 Message Passing
	3.10 Restart Procedures
	3.11 Exit Procedures
	3.12 Task Enhancements

	4. Interrupt Service Procedures
	4.1 The Processor Interrupt Facility
	4.2 ISPs for External Interrupts
	4.3 Nested Interrupts
	4.4 ISP/Task Communication
	4.5 Task Error Traps
	4.6 Non-Maskable Interrupt
	4.7 Special Interrupts
	4.8 Fatal Exception Traps
	4.9 Vector Table Initialization

	5. AMX Timing Control
	5.1 Introduction to Timing Facilities
	5.2 AMX Clock Handler and Kernel Task
	5.3 Interval Timers and Timer Procedures
	5.4 Task Time Slicing
	5.5 Time/Date Manager

	6. AMX Semaphore Manager
	6.1 Introduction
	6.2 Semaphore Use
	6.3 Semaphore Applications
	6.4 Priority Inversion Avoidance

	7. AMX Event Manager
	7.1 Introduction
	7.2 Event Synchronization
	7.3 Event Flag Application

	8. AMX Mailbox Manager
	8.1 Introduction
	8.2 Mailbox Use
	8.3 Mailbox Application

	9. AMX Message Exchange Manager
	9.1 Introduction
	9.2 Message Exchange Use
	9.3 Message Exchange Application

	10. AMX Buffer Manager
	10.1 Introduction
	10.2 Buffer Pool Use
	10.3 Buffer Applications
	10.4 Buffer Manager Caveats

	11. AMX Memory Manager
	11.1 Introduction
	11.2 Nomenclature
	11.3 Memory Pool Use
	11.4 Private Memory Allocation

	12. AMX Circular List Manager
	12.1 Circular Lists
	12.2 Circular List Use
	12.3 Circular List Structure

	13. AMX Linked List Manager
	13.1 Introduction
	13.2 Linked Lists
	13.3 Linked List Use

	14. Advanced Topics
	14.1 Fatal Exit
	14.2 User Error Procedure
	14.3 Task Scheduling Hooks
	14.4 Abnormal Task Termination
	14.5 Task Suspend/Resume
	14.6 Message Exchange Tasks

	15. AMX System Configuration
	15.1 System Configuration Module
	15.2 System Configuration Builder
	15.3 Using the Builder
	15.4 System Parameter Definition
	Kernel Options
	Timing Options

	15.5 AMX Object Allocation
	15.6 Restart/Exit Procedure Definition
	15.7 Task Definition
	15.8 AMX Object Definitions
	Timer Definition
	Semaphore Definition
	Event Group Definition
	Mailbox Definition
	Message Exchange Definition
	Buffer Pool Definition
	Memory Pool Definition

	16. AMX Target Configuration
	16.1 Target Configuration Module
	16.2 Target Configuration Generation
	16.3 Target Parameters

	17. AMX Service Procedures
	17.1 Introduction
	17.2 Summary of Services

	18. AMX Procedures
	18.1 Introduction
	cjbmbuild ...
	cjcfxxxxxx ...
	cjclabl ...
	cjevbuild ...
	cjkserror ...
	cjkslaunch ...
	cjlmcreate ...
	cjmbbuild ...
	cjmmbuild ...
	cjmxbuild ...
	cjrmbuild ...
	cjsmbuild ...
	cjtdfmt ...
	cjtkbuild ...
	cjtmbuild ...

	A. AMX Reserved Words
	B. AMX Error Codes
	C. Configuration Generator Specifications
	C.1 Introduction
	C.2 User Parameter File Specification
	C.3 System Configuration Template
	C.4 Porting the Configuration Generator

	D. AMX Library Construction
	D.1 Building the AMX Library
	D.2 A Custom AMX Library

	Index

